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Soft Segmentation of Viral Labeled Neurons

Abstract

Fluorescent labeling of neurons by neurotropic viruses has become an important tool used in neu-
roscientific research for tracing synaptic connections and analyzing neuroanatomy. After the advent
of combinatorial spectral expression by means of viral vectors, the technique now allows simul-
taneous discrimination of neurons in great quantities. However, manual analysis of viral labeled
neurons is time-consuming and poses many challenges for scientists. Designing an automatic and
robust processing algorithm has been found elusive especially for neural morphology studies be-
cause of complex and stochastic appearance of thin dendritic structures. As the analysis of neural
morphology requires extraction of full neural arborization (i.e., branching), monochromatic viral
labeling only allows processing of sparse regions that do not contain overlapping neurons, thereby
motivating the development of spectral labeling for sparsification of neuron populations.

Unlike previous studies favoring hard segmentation, we propose a fully unsupervised pixel-
level soft segmentation algorithm to separate spectral labeled neurites and to enable morphological
analysis of overlapping neurons. Firstly, to eliminate biological noise and enhance dendrites, we
cast prepossessing step as piecewise-image recovery task, and propose a fast image flattening al-
gorithm based on a weighted `1-norm total variation where close data points are leveled out and
high gradients are preserved. We efficiently minimize the energy function by a modular taut-string
based proximal algorithm. To further augment preprocessing, background subtraction and linear
contrast enhancement are employed. Inspired by color and object manipulation methods employed
in computer graphics, we invert weighted Porter-Duff compositing model by ridge and `2-norm to-
tal variation regularized optimization and extract opacity values corresponding each pixel for each
of the expressed fluorescent labels (i.e., pseudo-colors) as soft segments. Finally, we show the effec-
tiveness of our algorithm by qualitative analysis applied to confocal image stack obtained from mice
retina and by quantitative measures using synthetically generated images with the corresponding
ground truth.

Our algorithm design aims classification of retinal ganglion cells, and it is specifically designed
to relax the hard boundaries and to keep dendrites intact as their arborization carry the informa-
tion for identification of these cells. To reconstruct full branching of neurons in 3d, we propose a
post-processing algorithm based on nonlinear morphological operations and convert soft segments
to binary masks. This masking step ensures preservation of details and removes non-neural compo-
nents. The code of the full pipeline is publicly available at github.com/elras/SoftsegmentNeurons.
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1 Introduction

Historically considered as a qualitative technique, advances in computational resources and imag-
ing modalities have made microscopy a powerful quantitative tool for modern biology research.
The new research directions such as computational microscopy and bioimage analysis show great
promise for many challenges from understanding subcellular mechanisms to large neural networks.
Both electron and optical microscopy have become the primary ways to retrieve information. How-
ever, unlike electron microscopy, optical microscopy (e.g., widefield, confocal, multiphoton, light-
sheet) is able to provide high spatial, spectral and temporal resolution in vivo. Target specific imag-
ing of fluorescence labels enabled by genetic engineering and viral tracing makes optical microscopy
even more advantageous and inalienable for many tasks where specificity is of importance. In this
project, we particularly focus on the analysis of confocal microscopy images where fluorescent
emission is sustained by means of viral tracing. Although this technique creates cell specificity and
enables tracing of connected networks by transsynaptic transmission of viral vectors, it is stochas-
tic and inherently generates random spectral labelling of targeted neurons. From image processing
point of view, viral labeled neural data poses many challenges that have to be addressed before pro-
ceeding to analysis. Furthermore, advances in automatic processing (e.g., denoising, segmentation)
has been tampered as biosignatures are generally application-dependent and may not be unveiled
by general algorithms. For that reason, segmentation is known to be one of the most challenging
tasks in bioimage analysis [2].

Identification of neural cell types, understanding their function and deciphering their connec-
tome are of the main goals of neuroscientific research [3, 4, 5]. But even for the retina, one of the
most studied parts of the nervous system, the number of distinct retinal ganglion cell (RGC) types
and their projections to corresponding brain areas remain unclear [6]. Considering the importance
of ganglion cells as they transmit the sole output of visual signals from the retina, determination
of their types and function become an important research question in visual neuroscience. To dis-
tinguish distinct RGC types; morphological characteristics (i.e., dendritic branching, arborization),
electrical response properties and molecular or genetic markers have been employed in the litera-
ture [7, 8, 9, 10, 11, 12]. Among these methods, quantitative analysis of neural anatomy (i.e., neu-
ral morphology) is particularly attractive as the development of fluorescent expressing viral vectors
and sophisticated microscopes make simultaneous capturing of neurons and image-based analy-
sis of their morphology possible [13, 14]. Augmented with automatic image processing pipelines,
imaging of viral labelled neurons create the opportunity to disclose characteristics of large neural
populations [15].

Neurotropic viruses have become a standard tool for labeling distinct cell types and unveiling
their connectivity sustained by synaptic connections [16]. Specific virus types have natural charac-
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Figure 1: Sample spectral viral labeled retinal ganglion cells (Retinabow). In this four different
maximum intensity projection images obtained by confocal laser scanning microscopy, expression
and mixing of pseudo-color fluorescent proteins are clearly visible.

teristics that make them ideal neural tracers: They can surpass neuron membrane and interact with
cell nucleic acids, they can travel along axons in anterograde or retrograde direction, they can be
manipulated to fill the whole cell or to amplify the relevant signal, when necessary eliminating the
need for immunochemistry, they allow spectral tracing, and lastly they can cross synapses and tag
post-synaptic targets [17]. Therefore, when incorporated with fluorescent proteins (e.g., GFP [18]),
they become a powerful tool for neural circuit analysis as they enable image-based observation and
analysis of neural components [19]. Yet, manual tracing of captured images requires expert labour,
besides automatic processing is heavily complicated by naturally overlapping structure of dendritic
trees. One way to overcome this challenge is to label neurons with spectral signature expressing
fluorescent proteins (i.e., commonly illustrated by pseudo-colors), thereby utilizing spectral infor-
mation as the cue for automatic separation of dendrites. Spectral neuron labeling has been previ-
ously applied for analyzing neural connectome of mouse hippocampus (brainbow) [20], drosophila
(flybow) [21] and zebrafish (zebrabow) [22]. Combinatorial multicolor fluorescent expression can
be obtained via variety of strategies. In our case, three distinct fluorescent proteins; mCherry emit-
ting in the red end of visible spectrum, BFG in the blue end, and GCaMP6 in the green band have
been employed (i.e, three-channel spectral imaging). Details for our protocol to obtain multi-color
expression in retina (retinabow) is explained in the Appendix A. Briefly, the method is based on
injection of three different retrograde viral vectors to wide-field neurons in the mouse superior cal-
culus. As wide-field neurons take input from retinal ganglion cells, by allowing viruses to transverse
for a certain amount of time (approximately 21 days), retinal ganglion cells can be contaminated
by combinatorial mixture of these three viral vectors (Figure 1).

Our goal differs from these works as we desire to analyze neuron morphology instead of con-
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A Dense Labeling B Sparse Labeling

Figure 2: Dense vs sparse viral monochrome labeling: (A) Labeling of densely distributed neurons,
(B) labeling of an isolated neuron.

nectomics. To do so, we create fluorescent expression by using three different viral vectors and
then sparsify juxtaposed RGC neurites. This thesis focuses on image processing aspects and aims to
further contribute image-based cell type identification by developing an unsupervised algorithm to
extract soft segments from confocal microscope image stacks that are stained by distinct spectral
signatures.

1.1 Problem Statement

The established way of classifying neural cells is done by clustering of features obtained from the
distribution of neuron’s dendritic tree. This clustering is further supported by additional genetic or
molecular markers, therefore giving the opportunity to identify unknown cell types [13]. However,
the main problem with this approach is that it can only be applied when neurons are isolated, in
other words, their dendrites show minimum overlap with neighbouring neurons’ arborization (Fig-
ure 2). This problem restricts the applicability of the approach for most of the neurons, especially
in the retina, as retinal ganglion cells are distributed densely to enable even sampling across the
visual field.

By discovering different fluorescent proteins that emit light in non-overlapping spectral bands,
one may exploit traditional viral tracing and genetical tools to multiplex different fluorescent label-
ing for densely situated neurons. Therefore, the specification can be obtained by segmentation of
neurons homogeneously labeled by fluorescence mixture.

Existing literature uses both terms, multicolor and spectral labeling, interchangeably when re-
ferring the technique. However in this project, we are interested in the unsupervised fuzzy classi-
fication of pixels (e.g., soft clustering, segmentation) according to distinct fluorescence labels, and

3
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A B C D

Figure 3: Challenges in processing retinabow. (A) Inhomogenous labelling (both cyan and green
hue can be observed), (B) overlapping nature of dendrites, (C) very thin appearance of dendrites
(an example of 1 pixel-wide branch), (D) biological background noise (unintended staining of
background tissues).

perceptual attributes are not of interest. Therefore, we prefer using the term "fluorescent label" or
"spectral label" instead of "multicolor" when discussing the analysis of these images. In this work,
pixels are merely tensors that can be represented in any orthogonal coordinate space. Following
previous works, our pseudocolor spectral images are illustrated in sRGB color space. These images
contain 4 spectral channels where the 4th channel is used for reference purposes to label starburst
amacrine cells by ChAT antibodies, and other three channel is used to label and segment retinal
ganglion cells.

As stated previously, spectral labeling is stochastic; in other words, spectral mixing cannot be
directly controlled and (if happens) it is random. As a work-in-progress protocol, it also exhibits
severe challenges further complicating analysis of captured images. As illustrated in Figure 3, the
main challenges that must be addressed during the design step are: Heavily overlapping nature
of dendrites, viral diffusion inhomogeneity, very thin appearance of dendrites, and background
biological noise.

1.2 Research Proposal and Contributions

Dendritic trees contain features used to identify the cell types, hence an algorithm aiming seg-
mentation of neurons should be carefully designed not to spoil any relevant information. However,
dendrites are much harder to segment comparing neuron soma and they are more vulnerable to
color variations especially caused by background noise (i.e., because of their thin structure). Dete-
rioration caused by the imaging system may adversely affect dendrites more than soma. To solve
this problem, it is necessary to implement a deconvolution step during preprocessing. On the other
hand, deconvolution is actually not desired as we aim to improve label homogeneity in neurons
and deconvolution might unmix observed spectral mixing i.e., by applying deconvolution, diffusion
homogeneity of a purple labeled neuron with visible blue and red parts might be reduced. This
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trade-off makes this segmentation task even more challenging one.

Inverse Problem Forward Problem

Pseudo-color vertices 
(fluorescent labels)

Soft segments

Input max-projection 

Over-compositing

+

Figure 4: Porter-Duff over-compositing model: Our algorithm accepts user input for number of ex-
pected fluorescent labels and automatically computes data convex hull vertices (i.e., color palette).
Then it recovers RGBA segments for each label such that when composited by weighted Porter-
Duff forward model, the input image is synthesized. This enables us to use weighted Porter-Duff
model in a least-squares optimization framework where alpha segments are estimated using a priori
regularizers.

To address this challenges, in this work we propose to develop a soft segmentation algorithm
that is flexible enough to extract very thin homogeneously labeled neurons. We set the prepro-
cessing as a piecewise image recovery task that is able to balance the trade-off between desired
color mixing and extraction of thin structures. For this purpose, we exploit weighted `1-norm total
variation edge-aware flattening where the balance is achieved through weighting of the TV − `1
regularization term. Prior to flattening, the images are enhanced by BaSIC background subtraction
[23] and linear contrast stretching. Soft segmentation step is carried out by inverting weighted
Porter-Duff forward model [24]. Here, the idea is inspired by color manipulation algorithm pro-
posed by Tan et al. [25] where Porter-Duff model is used as the forward model. Inversion is carried
by numerical optimization where regularization is designed to achieve optimum soft segments with
minimum overlap. As sketched in Figure 4, the algorithm results in alpha layers (i.e pixelwise opac-
ity values) for each of the observed pseudo-color. The proposed method requires no supervision
except an user-input indicating number of expected fluorescent expressions (i.e., number of soft
segments). Fluorescent images have different statistics than natural reflective images, and we see
that previously applied priors and heuristics do not hold for them. For example, representative-
based methods to find the dominant color (e.g., k-means, fuzzy c-means Gaussian mixture models)
are shown to fail as fluorescent image pixels values are actually distributed on the outer surface of
the manifold. In this work, we compute convex polyhedron (i.e., hull) encompassing all colors and
find distinct vertices matching user input [25]. This enables automatic discovery of spectral labels
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even if it only exists in just a single pixel.
We can list the contributions of this work as:

• Our work differs from previous studies in neuron segmentation as they opt for segmenting
neurons by using hard boundaries (i.e., only one class attributed to each pixel). To the best of
our knowledge, our work also illustrates the first example of soft segmentation applied on 3d
multi-channel image stacks.

• We propose the proximal image flattening algorithm that is able to recover piecewise constant
version of the input image by using weighted taut-string optimization [26]. The proposed
method reaches an operation speed of couple of seconds, and improves the state of the art
[27] that operates in a few minutes.

• We modify the standard Porter-Duff equation [24, 25] and propose to invert weighted model
where higher inter-class separation is achieved.

• The developed unsupervised post-processing pipeline, which is based on nonlinear morpho-
logical operators, results in equivalent performance and speed comparing the state of the art
without depending on a trained deep neural network (e.g., [14]).

• Our overall pipeline achieves much better segmentation results than the previous study [1]
on viral labeled neuron image stacks.

1.3 Outline of The Thesis

The remainder of the paper is organized as follows: In Chapter 2, we give a detailed overview
of previous spectral labeled neuron segmentation methods and numerical optimization which is
exploited during development of the algorithms. The proposed pipeline including preprocessing,
soft-segmentation and post-processing, that is used to obtain binary masks of neurons, explained in
Chapter 3. Chapter 4 gives results and discussion of qualitative analysis applied to real retinabow
data and quantitative analysis evaluated on synthetically generated image stacks. Conclusions are
drawn in Chapter 5 with proposition of possible future research directions.
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1.4 Mathematical Notation

<n n dimensional space of real numbers

Zn n dimensional space of integer numbers

IT transpose of matrix I

∇f ,
(
∂f
∂x1

, .. ∂f
∂xn

)
the gradient operator on f : <n → <n

∇f ,


∂f1
∂x1

.. ∂f1
∂xn

.. ∂f2
∂x2

..
∂fm
∂x1

.. ..

 the Jacobian matrix on fi ∈ <n | i ∈ {1,m}

‖x‖p ,
(∑

xpi
) 1

p Lp norm defined on x : <n → <

‖x‖∞ ,Max
i∈1,n

‖xi‖1 L∞ norm on x : <n → <

‖x‖0 L0 norm to count number of nonzero elements in x ∈ <n

∇2f ,


∂2f
∂x2

1
.. ∂2f

∂x1xn

.. ∂2f
∂x2

2
..

∂2f
∂xnx1

.. ..

 the Hessian matrix on f ∈ <n

prox(x)λ,f , argminu(f(u)− 1
2λ‖u− x‖

2
2). proximal operator of f(x)

TV `p(f) , ‖∇f‖p total variation regularization using Lp norm (TV − `p)
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2 Background

Image segmentation is one of the core research topics heavily studied in computer vision. The
current state of the art in supervised image segmentation (e.g., semantic, instance or panoptic
segmentation) is dominated by deep neural networks [28, 29, 30, 31]. On the other hand, in un-
supervised segmentation; hierarchical [32, 33], graph [34, 35, 36, 37], clustering [38, 39] and
optimization [40, 41] based methods are also proposed in addition to popular deep neural net-
work based approaches aiming unsupervised grouping of pixels [42, 43]. Furthermore, there is a
growing interest towards unsupervised low-level processing of images e.g., for contour detection
[44, 45, 46, 47] and intrinsic decomposition [27, 48, 49, 50, 51] that targets identification of ho-
mogeneous regions of images similar to segmentation. Yet, deep image segmentation still suffers in
capturing single-pixel-level details, thereby motivating researchers to employ augmentations such
as conditional random fields (CRF) [52] employed in Deeplab [53] (previous leader in PASCAL-
VOC segmentation challenge). The inability of convolutional neural networks to adapt pixel-level
variations is attributed to their large receptive fields especially present in the final layers. Current
research frontier has been pushed to seek alternatives to fully convolutional networks e.g., hyper-
columns in [54, 31] which exploits history of each output pixel from previous layers as features to
a classifier (e.g., fully connected net). This has been shown to compensate large receptive field of
output layers and increase pixel-level details in segmentation tasks.

Soft segmentation has also gained attention during the last decade particularly in the graphics
and VFX industry. The main motive driving soft segmentation research is the desire for perceptual
color and object manipulation directly in photographs and videos [55, 56, 25, 57, 58, 59]. Similarly
image matting research, where opacity values belonging to foreground object is estimated, unveiled
sophisticated ideas [60, 61]. Although there have been attempts for fully unsupervised image mat-
ting (e.g., [62]), the current state-of-the-art still depends on user-input indicating the location of
the foreground object (e.g., trimap, seeds). Also, matting algorithms excel in segmenting a single
foreground object, and most of the time not suitable for multiple objects. By allowing more than
one class for each pixel, in this work we exploit the flexibility of soft pixel-level decomposition when
extracting salient dendritic segments. Our method segments all the neurons belonging to a specific
class (i.e., a fluorescent label), and allows multiple layers as opposed image matting where only
foreground and background separation is succeeded.

Data-eager nature of deep neural networks and lack of available expert annotated datasets has
motivated bioimage computing research community to concentrate more on the development of
interactive segmentation frameworks such as Ilastik that has been frequently used for segmenta-
tion of transmission electron microscopy stacks [63]. Although there have been previous attempts
for automatic segmentation of fluorescent microscopy images, they are mainly based on hard seg-
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mentation which is not suitable for segmenting elongated dendritic structures (i.e., failure of hard
segmentation to capture fine dendritic details are shown in the results section) or they aim to seg-
ment neuron soma or axons, that are larger comparing dendrites, for cytometry and connectomics
purposes. In the following sections, previous studies proposing segmentation of spectral labeled
fluorescent image stacks and our algorithmic approach, learning by numerical optimization, will be
summarized.

2.1 Related Work: Segmentation of Spectral Labeled Neurons

Previous studies on segmentation of spectral labeled neural structures can be divided into three
main categories. The focus in all these studies are generally segmentation of neuron soma or axon,
and they do not aim morphological analysis of dendrites. These three categories are: Unsupervised
segmentation methods designed for segmentation of neuron soma and axons [64, 65, 66, 67, 68, 69,
1, 70], interactive segmentation of brainbow stacks (i.e., spectral labelled hippocampus neurons)
[71] and a recent work on data-driven segmentation of brainbow images using a recurrent neural
network [72, 73]. In the results section, because of the lack of available codes and relevancy of
algorithms, our results will be compared with the results obtained from [1]. Here, methods aiming
neural tracing in monochrome images are skipped as they constitute the next step in connectome
analysis after sparsification of overlapping neurites.

2.1.1 Unsupervised Segmentation

In [64, 65], Bas et al., propose axon tracing algorithms, first based on piecewise cylindrical model
that aims to follow the curvilinear structure of axons starting from a seed point, and a ridge esti-
mation by statistical modelling of the principal curve (i.e., skeleton) [74]. Authors evaluate their
methods on synthetically generated axons and a captured brainbow fiber stack with the manually
annotated ground truth. Although they present the first processing method for brainbow stacks,
their work is limited to tracing of axons and is not generalized to other neural structures. In [67],
a simple level set based axon segmentation method is presented. In [68], a Bayesian brainbow
segmentation algorithm is proposed that can be applied to extract a single whole-body neuron in a
sparse setting. In [69], authors propose a retinal ganglion cell soma segmentation method using ac-
tive contours and watershed transform. Unlike previous papers, Shao et al., realize the importance
of soft mating not to sacrifice highly detailed stratification of dendritic trees [66]. Authors apply
morphological operations to smooth homogeneous regions and choose region growing followed
by alpha mating to extract overlapping segmented regions. The method is evaluated on a flybow
image stack. It should be noted that seeded image segmentation can be interpreted as graph node
labeling that also encompasses graph-cut and random-walking as special cases [75]. Methods in
this set, compute hard region boundaries via energy minimization and may induce spatial disconti-
nuities while segmenting dendrites (see Chapter 4). In [70], Chen et. al., borrow density functional
theory from physical modelling and presents illustrative applications for MRI and brainbow ROI
segmentation.

Unlike previous studies, Sumbul et al., propose segmentation of combinatorially expressed spec-
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BM4D filtering Supervoxels by 
watershed-cuts

Background is set to 
zero (i.e., flooded 

regions in the 
watershed-cut)

Merging of divided 
supervoxels with similar 

color

Division of 
heterogeneous 

supervoxels

Spectral clustering of 
supervoxels 

represented by mean 
color

Further clustering by 
k-means to recover N 

segments

Figure 5: Overview of the algorithm employed in [1]: Authors propose an algorithm based on spec-
tral clustering of supervoxels created by watershed-cuts. Clustering is carried out using the mean
color of the supervoxels. At the outset, authors denoise input image stack by patch-based BM4D
Gaussian denoising. At the last step, segments are recovered according to user input indicating the
number of segments.

tral labeled neurons in a real-world setting. Moreover, they show its applicability on brainbow
images captured from mice hippocampus and on a synthetic dataset with corresponding ground
truth [1]. Their implementation is publicly available online, which allow us to show the results of
the proposed algorithm on our viral labeled retinabow images. The pipeline follows the pattern
recognition tradition and consists of several steps applied end-to-end. Firstly authors’ denoise im-
age stack by collaborative filtering (i.e., joint transform domain filtering of similar regions found
by patch matching). Then, over-segmented version of the stack (i.e., supervoxels) is created by
watershed transform; by representing each supervoxel as graph nodes having mean color as the
node weight, normalized cuts is carried out to further group supervoxels. To improve segmentation
results, authors’ split heterogeneous supervoxels and merge if neighbouring voxel color difference
is smaller than a predefined threshold. The last step is k-means clustering where a predetermined
number of color volumes are quarried from volumes labeled by normalized cuts (Figure 5).

2.1.2 Interactive Segmentation

In [71], Rossien et al., present nTracer, made available as an ImageJ plug-in, that allows interactive
tracing of brainbow spectral images (3-4 channels). The idea is to allow the user to specify end-
points of neurites then by using a color similarity based flooding technique, close voxels are merged.
Similar interactive tracing has been previously applied for monochromatic images in [76].

2.1.3 Supervised Segmentation by Deep Learning

Two recent works employ a data-driven approach and exploit annotated image sets to train deep
neural networks for segmentation of spectral labeled neuron image stacks. In [72], a fully convo-
lutional network is trained for segmentation of neuron soma only. Yan et al., [73] on the other
hand, trains a recurrent network to attempt segmenting full brainbow branching. To do that they
hand-label a large dataset obtained from mice hippocampus.

2.2 Numerical Optimization

In the proposed pipeline, algorithmic components of both preprocessing and soft segmentation
is based on mathematical optimization. Therefore, in this section a brief overview of numerical
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optimization is presented with a special emphasis on the theoretical aspects in addition to the algo-
rithmic details. For classical textbook analysis, Nocedal & Wright [77], Boyd & Vandenberghe [78]
and Luenberg et al. [79] can be referred. Here, we only concentrate on continuous deterministic
optimization methods as we perform relaxation of variables in our image processing and carry out
computations with the assumption that pixel value pi ∈ [0, 1], i ∈ {1, N} where N is the number of
pixels in the image I. For detailed overview of discrete and stochastic optimization, [80] and [81]
can be worth consulting. It should be noted that vector notations (i.e., bold letters or arrow indica-
tions) are not used in this section. As we work on N-dimensional variables (images), we assume all
variables to be vectors in this context.

Mathematical optimization aims to find optimal values x∗ for a set of variables, vectorized as
x ∈ S satisfying constraints Ci such that an objective function f(x) is minimum:

x∗ = argminx∈Sf(x) subject to

{
Cei (x) = 0

Cii (x) ≤ 0
. (2.1)

Here f(x) : <N → < and C
{e,i}
i (x) : <N → < represents the energy function and constraint

functions of vector of variables x chosen from a set S. Constraint functions are allowed to be
equality or inequality constraints. Working in the discrete domain constitutes solving a NP-hard
problem [77], hence we choose to work in the space of real numbers. For our problem, bounded
nature of image pixel values pi ∈ [0, 1] creates a box constraint optimization problem (i.e., 8 bit or
16 bit unsigned integer encoded input image is converted to work with values from the real-valued
set S = [0, 1]). In optimization problems, the objective function can be linear or nonlinear, and for
each case methods to obtain a successful optimization result differs. As it will be explained in the
methods chapter (Chap. 3), soft segmentation is posed as a nonlinear programming because of the
design of the energy function (i.e., here programming denotes optimization, this term has been
widely used since the 1940s [77]).

Optimization algorithms are iterative and aims finding {xi}mi=1 from the initial guess x0 where it
is desired to reach an optimal set of variable values {x∗i }mi=1 such that f(x∗i ) < f(xi). There exist no
absolute categorization of optimization algorithms in the literature. Also, mostly choice of a method
depends on the application at hand. For example, we can classify optimization algorithms according
to objective function characteristics (e.g., linear/nonlinear, or zero-order/first-order/second-order
according to the availability of gradient and Hessian), according to types of variables considered
(e.g., continuous/combinatorial), or according to constraints. In addition to these, there are also
cases when the global minimum of an unknown function is calculated (e.g., Bayesian optimiza-
tion). Energy minimization also formulates the means of learning in graph-based machine learning
methods such as Markov random fields (MRF), conditional random fields (CRF) [82] and neural
networks [83].

Since complete treatment of optimization algorithms is not feasible, in this section some of the
mainstream algorithms related to our optimization problem will be briefly presented. We also give
an overview of `1-norm and total variation (TV ) regularized optimization that has become very
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popular because of its sparsity-enforcing capabilities when solving inverse problems. In the prepro-
cessing step, an `1 total variation regularized piecewise constant image recovery will be presented.
Soft segmentation method, which is inspired by [25], applies L-BFGS-B [84], a version of BFGS (i.e.,
Broyden–Fletcher–Goldfarb–Shanno) optimization algorithm that allows large-scale minimization
of energy functions with simple bounds. BFGS will be presented in the next section as an example
of quasi-Newton methods. At this stage, we divide optimization into three main categories for ex-
planation purposes: Optimizing unconstrained smooth functions, constrained smooth and general
non-differentiable functions. Although general optimization methods such as proximal algorithms
used for non-smooth functions can be also used for smooth functions, very efficient solvers already
exist for the latter and they are preferred over the non-smooth solvers.

Optimizing Unconstrained Smooth Functions
Minimization of a smooth function f : <n → < of real variables x ∈ <n with no constraints is
defined as:

Min
x

f(x). (2.2)

Since global behaviour of f(x) is unknown generally, optimization aims finding local minimum
around a local neighbourhood. But, for the case when f(x) is known to be convex where f(ax +

(1−a)y) ≤ af(x)+(1−a)f(y) | x ∈ <n and y ∈ <n, ∀a ∈ [0, 1], one can prove that a local minimum
point z ∈ <n is also a global minimum:

Proof. To lead contradiction, suppose z ∈ < is a local minimum but not global, then we should be
able to find points z∗ for a convex function f : <n → < such that f(z∗) < f(z). Now, consider close
neighbourhood of z such that for some small λ, f(λz∗ + (1− λ)z) < f(z) is valid due to convexity.
Therefore, z actually cannot be a local minimum.

Convexity plays an important role in optimization research. For example, convex optimization
can be used to bound nonconvex problems arising in global optimization [78] in addition to con-
vexification techniques for approximating nonconvex problems [85]. It can be further speculated
whether it is necessary to evaluate f for every point x ∈ <n to find local minima of f(x). Actu-
ally, it is possible to exploit gradient vector ∇f and Hessian matrix ∇2f to deduce the direction to
which iterator should move. However, computation of gradient or Hessian might be expensive or
not feasible due to noisy data. Therefore, sometimes it can be necessary to approximate some of
these operators (e.g., quasi-Newton when Hessian approximated) or change the strategy totally by
not using any gradient information at all (e.g., zero order optimization).

As optimization algorithms approach local minima iteratively, direction and step length need
to be updated at each iteration. According to the strategies employed to find these two param-
eters, we can categorize unconstrained optimization methods into two classes: Line search and
trust region methods. In this work, we are more interested in line search methods, but trust regions
methods have correspondence with line search methods and they require computation of analogues
parameters at each iteration. Four main techniques for line search are steepest descent, Newton,
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conjugate gradient and quasi-Newton methods which also include BFGS algorithm. This catego-
rization is made according to the calculation of search direction where minimization is achieved.
Details about these strategies are presented below. For the theoretical derivation of sufficient and
necessary conditions for minimizing unconstrained functions, we refer Wright & Nocedal [77].

At this point, It is necessary to state Taylor’s theorem as parameters of line search can be derived
by using it. Let f : <n → < be continuous function about a point x0, Taylor’s expansion for the
function f can be defined by:

f(x) =
∑
n

1

n!
((x− x0)∇)nf(x), (2.3)

when f(x) is a differentiable function, for some ν ∈ <n and t ∈ (0, 1) theorem reduces to:

f(x+ ν) = f(x) +∇f(x+ tν)T ν, (2.4)

if f(x) twice differentiable, following expression can be derived:

f(x+ ν) = f(x) +∇f(x)T ν + 1

2
νT∇2f(x+ tν)ν. (2.5)

Line search algorithms iterates along a direction pk with a step length ak on the surface of f(x)
to reach local minima satisfying Wolfe conditions (i.e., sufficient decrease and curvature conditions,
see [77]):

Min
a>0

f(xk + akpk), (2.6)

thus it is necessary to find optimum direction and step length parameters. Descent methods
utilize steepest descent direction, i.e., direction where decrease in f is highest, −∇f . We can justify
this claim by Taylor’s theorem written as:

f(xk + ap) = f(x) + apT∇fk +
1

2
a2pT∇2f(x+ tp)p. (2.7)

Consider neighbourhood of f(x) at xk, by using the theorem we can see the fastest change,
df/da, for a→ 0 is the solution to the following minimization problem:

Min
p

pT∇fk s. t. ‖p‖ = 1. (2.8)

It is straightforward to see that function is minimum when direction p is opposite of the direction
∇fk. There are many ways to find optimum step length a. A common method is called backtrack-
ing where iteratively the best a that achieves sufficient minimization is chosen. Though intuitive,
steepest descent may not give desired results and can be very slow. Another way of finding descent
direction is by Newton’s method. Newton direction is derived from second-order expansion of f by
Taylor’s series, mk at a point xk such that mk(p) ∼ f(xk + p):

mk(p) = fk + pT∇fk +
1

2
pT∇2fkp. (2.9)
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Solving for Min
p
{mk} by setting dmk/dp = 0, one can show that Newton direction pN at point

xk is:
pN = −(∇2fk)

−1∇fk. (2.10)

The advantage of Newton’s method is it exploits second order information in addition to the gra-
dient. Yet, it requires inversion of Hessian matrix∇2f which may not be available or computational
very expensive. To facilitate second order information, yet also to eliminate the need to calculate
exact Hessian, quasi-Newton methods are proposed which estimates ∇2f to find search direction.

Quasi-Newton methods aim to approximate Hessian, and let Bk be the approximate following
previous iteration, then similar to Newton direction, the quasi-newton direction is written as:

pN = −B−1k ∇fk. (2.11)

To ensure approximation behaves like true Hessian, we require secant condition derived from
Taylor expansion to hold where sk = xk − xk−1 and yk = ∇k −∇k−1:

Bksk = yk. (2.12)

In this part of the section, we briefly focus on BFGS (independently proposed by Broyden,
Fletcher, Goldfarb, and Shanno in 1970) quasi-Newton algorithm and its extension L-BFGS (a.k.a
limited memory BFGS) [86]. They are one of the most popular unconstrained optimization algo-
rithms utilized. At the soft segmentation step, its enhanced version allowing bounded constrained
optimization, L-BFGS-B, will be used to find optimum opacity values for soft segments. Update of
BFGS (Bk) and its inverse (B−1k ) is respectively defined by (for the proof see [87, 88, 89, 90]):

Bk = Bk−1 +
yky

T
k

yTk sk
+
Bk−1sks

T
kBk−1

sTkBk−1sk
, (2.13)

B−1k =

(
I − sky

T
k

yTk sk

)
B−1k−1

(
I − yks

T
k

yTk sk

)
+
sks

T
k

yTk sk
. (2.14)

Pseudocode of quasi-Newton BFGS iterations is provided in Algo. 1. This overall structure is
similar to other quasi-Newton line search methods. But as there is still a need to store and process
large amount of data, limited-memory versions of these algorithms also appeared that decreases the
load in Hessian approximations. L-BFGS is the more efficient version of BFGS where for a chosen
m > 0 | m ∈ Z, only m << n components of the vector s and y are stored and rest is deleted
(Algo. 2). Also, strong Wolfe conditions are set to increase stability [77]. It should be noted that
estimating B−1k at each iteration can be advantageous to skip the computationally expensive matrix
inversion step. We also propagate B−1k instead of Bk during optimization.

Conjugate gradient methods (CG) are an efficient class of minimization algorithms that do not
require storage of matrices. In CG, the search direction is defined by following where β is a scalar
sustaining conjugate relation between pk and pk−1.

pk = −∇fk + βpk−1. (2.15)
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Algorithm 1 BFGS algorithm

1: procedure BFGS()
2: B−10 ← I, k ← 0
3: while ‖∇fk‖ < ε do
4: pk ← −B−1k ∇fk
5: xk+1 ← xk +∇pkak
6: sk ← xk+1 − xk
7: yk ← ∇fk+1 −∇fk
8: B−1k+1 ← BFGS update (Eq. 2.14)
9: k ← k + 1

10: end while
11: return xk+1

12: end procedure

Algorithm 2 Limited memory BFGS algorithm (m-storage)

1: procedure L-BFGS()
2: Choose an m|n > m > 0, k ← 0
3: Initialize B−10

4: while ‖∇fk‖ < ε do
5: pk ← −B−1k ∇fk
6: xk+1 ← xk +∇pkak
7: Delete sk−m and yk−m if k > m
8: Save sk ← xk+1 − xk
9: Save yk ← ∇fk+1 −∇fk

10: Perform BFGS update
11: k ← k + 1
12: end while
13: return xk+1

14: end procedure

Optimization with Constraints
Unlike unconstrained optimization, constrained optimization seeks local optima satisfying a set
of equality and/or inequality feasibility conditions ci(x), i ∈ {E, I}. For problems including only
equality constraints, augmented Lagrangian algorithms are known to be the standard way of per-
forming the optimization. However, for the cases with inequality constraints, the problem becomes
difficult as it is necessary to check which constraints are active in the constraint set I. Accordingly,
carrying out programming with an active subset S ⊂ I is a smart action such that at optimization
stage, S can be taken as equality constraints in the Lagrange multiplier setting. This strategy of solv-
ing optimization with inequality constraints is generally employed by algorithms called active-set
methods. The more efficient way to optimize this type of problems is by applying nonlinear interior-
point algorithms where the optimal solution is obtained by first starting from a point that is far from
the feasibility border, and then approaching there (border) iteratively until the solution is obtained
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[77]. L-BFGS-B algorithm exploits the active-set strategy when incorporating box-constraints to the
L-BFGS formulation given in Algo. 2.

Optimizing Non-differentiable Functions
Minimizing general non-smooth energy functions is not possible by first or second order gradient-
based optimization methods. Considering the nonlinear and large-scale nature of visual computing
problems that include non-differentiable terms with `1 norm (e.g., TV −`1 denoising, basis pursuit)
number of research papers for efficient solvers have multiplied in recent years. One class of algo-
rithms, called Proximal methods [91], paved the way for fast and robust minimization with non-
smooth terms. In fact, many of the recent state of the art optimization algorithms can be proven to
be the special cases of proximal methods e.g., ADMM (or equivalently known as Douglas-Rachford)
[92, 93], split Bregman [94], Pock-Chambolle [95], FISTA [96], half-quadratic splitting [97]. For
further reading, we refer to Wotao Yin’s lecture notes on proximal operators and algorithms [98].

Proximal operator enables minimization of convex closed functions f : <N → <∪ {+∞} at the
proximity of x and is defined as the mapping <N → <N :

proxλf (x) , argminu(f(u)−
1

2λ
‖u− x‖22). (2.16)

As an example, we can derive gradient descent as a special case of proximal update. Consider a
function f(x) and its linear Taylor approximation at point x fl(x) = f(x)+∇T f(x)(u−x). By using
proximal operator of f(x) at the vicinity of x, we can write,

proxλfl(x) = argminu

(
(fl(x) +∇T fl(x)(u− x))−

1

2λ
‖u− x‖22

)
, (2.17)

As the first-order optimality condition, taking derivative with respect to u where minimum is
achieved and u = proxλfl(x) results in following expression (see [98, 91]):

∇T f(x)l +
1

λ
(proxλfl(x)− x) = 0, (2.18)

here local minimization problem (proxλfl(x)) reduces to gradient descent optimization where λ
indicates the step length:

proxλfl(x) = x− λ∇T fl(x)). (2.19)

Similar to above described descent derivation, Hessian approximating quasi-Newton algorithms
(e.g., Levenberg-Marquardt method) and closed form proximity operators of Lp norms from `∞

to `1 (e.g., soft-thresholding or shrink operator in split-Bregman [94]) can also be derived from
proximal methods.

Trick of the Trade: L1 Norm Regularization and Total Variation
Before describing ever-growing interest in `1 norm based optimization, it is necessary to introduce
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the concepts of sparse signals and sparse recovery. A sparse signal is a signal with few non-zero ele-
ments in a transform domain. This can be explained intuitively considering a natural image where
regions with uniform color variation are present. Therefore, by changing representation basis such
as by taking wavelet transform, an image can be transformed to a signal with a few non-zero el-
ements which particularly capture salient details (e.g., edges). The simple notion behind sparse
signals and recovery of these basis functions that gives sparse representation has far-reaching ap-
plications that enable reconstruction with few measurements (i.e., below Nyquist rate). The reason
this works very well is the nature of information and the fact that only a portion of the captured/pro-
cessed signal is sufficient for desired applications.

Sparse recovery in numerical optimization can be carried out by `0 minimization (i.e., mini-
mizing number of nonzero elements). But, this gives a non-convex optimization problem and the
solution is known to be NP-hard [99]. Instead, consider minimization of convex `1 norm in a linear
basis pursuit problem which unfolds to:

Min
x<n

‖x‖1, s.t. Ax = B, (2.20)

we can relax the above constrained optimization problem by writing it in the form of least-
squares and constraints as penalties:

Min
x∈<n

‖x‖1 + λ‖Ax− b‖2. (2.21)

Now consider below diagram where `p constrains are visualized for the problem described
above. It is striking to realize that p = 1 results in the only convex relaxation of `0 by intersect-
ing orthogonal axis at sparse locations i.e., xi = (0, k), x ∈ <2, k ∈ <.

A A A A

x

x̂

x

x̂

x

x̂

x

x̂

p = 1 p = 2 p =∞ p = 1
2

During the last decades, sparsity-inducing capabilities of `1 norm is exploited in different fields
as: Compressed sensing in imaging [100], regularized regression (LASSO with least squares or as
LAD-LASSO) [101], Dantzig selector [102] in statistical analysis and total variation (TV) denoisıng
in image processing [103]. At this point, we can also address the high dimensionality of problems
consisting of processing of images. Although commonly used by visual computing community, ‖.‖2
based optimization actually do not do good for most of the computer vision tasks. Dimension of the
solution space for these problems is so high that (e.g., up to 108) euclidean distance may not simply
capture the desired measure between data points.
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Proposed in [103], total variation (or as ROF, Rudin-Osher-Fatemi, regularization in some sources)
is a powerful regularization scheme employed in visual computing. It is defined by TV (x) , ‖∇x‖
where in classical formulation norm is chosen to be `1. For image processing applications, we can
define isotropic (TV − `2) and anisotropic (TV − `1) total variation formulations by:

TVi(x) ,
√∑

i,j

(xi+1,j − xi,j)2 + (xi,j+1 − xi,j)2, (2.22a)

TVa(x) ,
∑
i,j

‖xi+1,j − xi,j)‖+ ‖xi,j+1 − xi,j)‖. (2.22b)

Availability of methods allowing fast gradient computation makes TV regularization attractive
for image processing applications that give outstanding results. TV regularization enforce solutions
to have sparse gradient components, thus emphasizing salient features such as edges. Most com-
monly used data fidelity term used in TV (x) optimization is the least-squares term (i.e., `2 fidelity)
and defined by:

Min
x
‖x− y‖22 + TV (x)`1 . (2.23)

Although the current state of the art in several low-level computer vision problems is achieved
by TV − `1 norm based optimization. One can also speculate whether they are of the optimal
way of solving inverse problems in visual computing. Total variation restricts solution space to
only bounded variation images, yet one might fall a pitfall by claiming that natural images are of
bounded variation type. In fact, there are hints showing natural images are not actually bounded
variation, and it has been shown that total variation of images rockets to infinity as resolution
increases [104].

2.3 Confocal Fluorescence Microscopy

Confocal laser scanning microscopy is one the most commonly used imaging techniques in neuro-
science. The idea of using a pinhole to block out-of-focus fluorescent light dates back to the 1950’s.
At that time, this trick has been shown to improve image resolution and allow 3d imaging as the
focus-plane could be actually controlled to be able to scan the whole specimen. The main prob-
lem was the low amount of light received by the detector. On the other hand, modern confocal
microscopes with their embedded laser stimulation and digital preprocessing algorithms made con-
focal imaging the de facto way to capture high-resolution fluorescent signals. In a general confocal
imaging setting, laser excitation, focused by a pinhole, is reflected on a specimen using a dichroic
mirror. At the point stimulated by the laser, fluorophores emit fluorescence in a longer wavelength
than the excitation wavelength. The emitted light passes through the same dichroic mirror and is
focused on an image sensor (e.g., CCD, CMOS, sCMOS). The key trick in confocal imaging is the
use of pinholes at both excitation to localize laser excitation and at the detected side to eliminate
out-of-focus light (Figure 6). In most of the confocal microscopes, band-pass filters are used before
the detector in order to block stray light of unintended wavelengths.
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Figure 6: Confocal Fluorescence Microscopy: Illustration of out-of-focus light path blocking. It al-
lows much higher resolution comparing widefield microscopy (image source: [105]).

During the last decade, microscopy imaging had gone beyond the diffraction limit and reached
imaging resolution close to nanometer scale (e.g., <50 nm). Some examples of super-resolution
microscopy methods are STED, PALM, STORM and SIM. For instance the pioneering work, stimu-
lated emission depletion (STED) microscopy, exploits two laser excitation to selectively deactivate
fluorescent emission, hence it is able to resolve point-sources much closer than previously possible.
In this work, we employed Zeiss LSM 710 confocal microscopy, and image acquisition was not per-
formed as a part of the thesis work. Viral injections and scanned image stacks were made available
by my collaborators Chen Li and Katja Reinhard. Overview of how spectral viral labeling obtained
and imaging carried out is briefly explained in A.
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3 Proposed Method

The overlapping position of dendrites, when combined with high biological noise, imposes a chal-
lenging segmentation task. Although the soft segmentation idea is put forward to optimize extrac-
tion of thin structures, preprocessing should be properly designed to balance the trade-off between
two of our aims; increasing viral labeling homogeneity (e.g., by means of convolution) and pre-
serving salient structures (e.g., edges). Also, soft segmentation should be designed to add extra ro-
bustness to the pipeline so that whole neuron labeled with a single pseudo-color can be segmented
without dividing the neuron itself. In this section, our proposed processing pipeline to address these
problems is presented. An overview of the pipeline is illustrated in Figure 7. In the below sections,
algorithms constituting preprocessing, soft segmentation and post-processing where soft segments
are converted to binary layers will be explained in detail.

3.1 Preprocessing

Preprocessing consists of three main steps, and each one is designed to decrease the severity of
deterioration observed in fluorescent signal captured by confocal microscopy (Figure 3). As the first
step background subtraction is carried out to eliminate undesired biological staining (image D in
Figure 3), contrast enhancement is applied to emphasize fluorescent signal of neural components
comparing the relatively darker background, and image is sparsified by transforming image into its
piecewise constant version to increase homogeneity in the regions belonging to neuron. This is ob-
tained by minimizing a handcrafted energy function that preserves dendritic trees while flattening
it. In addition to the three-step preprocessing, it is advised to apply 3d median filtering if the image
acquired has high-level impulse noise (e.g., salt & pepper noise). This denoising step will be further
discussed in post-processing.

3.1.1 Background Subtraction

Background fluorescent is a common problem in fluorescent confocal imaging. Nonspecific sample
staining and autofluorescence are two of the main reasons causing background fluorescent noise
[106], and severity of this noise can halt quantitative bioimage analysis and may give inaccu-
rate segmentation results. Spectral viral tracing is an ongoing project and the protocol to optimize
neuron-specific fluorescent staining has not been fully established yet. Therefore, it is necessary to
augment the soft segmentation idea with a proper removal of undesired fluorescent components.
In our pipeline, we utilized ImageJ plug-in of BaSIC background subtraction framework proposed
by Peng et al., [23] as it offers an efficient way to remove undesired components. The algorithm is
augmented with flatfield, darkfield and baseline correction (i.e., average intensity variation along
depth). The algorithm sets the objective of fluorescent signal extraction from noisy multichannel
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Figure 7: Schematic illustrating proposed method. Preprocessing and soft segmentation are care-
fully designed to preserve information present in tiny and complex dendritic trees

measurements as an `1-norm based optimization problem, and carries out the solution by linearized
augmented Lagrangian method for low-rank representations [107]. Below, the idea behind BaSIC
will be briefly explained.

In the original work, authors sort the input image intensity values in ascending order and uses
this vectorized version instead. Their key (also dangerous) assumption is that for a large image
stack, distribution of foreground fluorescent objects can be assumed to be independent of pixel
location. Since we target segmenting densely labeled stacks, the assumption has minimum adverse
effects on our processing pipeline. Then, authors model measured intensity values of a sorted image
stack I ∈ <m,d at pixel i of the kth plane as follows:

Ii,k = BkSi,k +Ri,k, (3.1)

where Bk, k ∈ {1, d} is the constant baseline signal, Si,k, i ∈ {1,m}, k ∈ {1, d} denotes
flatfield multiplicative shading and Ri,k, i ∈ {1,m}, k ∈ {1, d} is the residual. The model is further
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augmented by inclusion of additive dark field component that models dark noise at pixel i:

Ii,k = BkSi,k +Di +Ri,k, (3.2)

with this model, the task of background subtraction reduces estimation ofB,S andD unknowns.
Note that splitting Di into two could be useful here to combine multiplicative scalar (Dz) and
additive (Dr) residual components together to form a compact solution:

Ii,k = (Bk +Dz
i )Si,k +Dz

i (1− Si,k) +Dr
i +Ri,k, (3.3)

the sum (Bk + Dz
i ) is low-rank, and the problem requires an efficient solver (i.e., solving a

low-rank representation is known to be computationally costly). In this problem, authors opt for an
augmented Lagrangian based solver [107]. In the solution, they elucidate sparse structure of images
at transform domain and pose the estimation as an `1-norm regularized constrained optimization
problem of the form:

Min
B,S,D

‖Rw‖1 + λs‖F (S)‖1 + λd‖F (Dr)‖1 + λd‖Dr‖1, (3.4)

subject to Ii,k = BkSi,k +Di +Ri,k,

where F (.) denotes the Fourier transform and Rw is the element-wise weighted version of R, the
weighting done iteratively by setting initial weight to zero and using estimated parameter values at
the previous iteration as:

Rwi,k ←
Ri,k√∑

j(Ri,k/Bi,k)
2 + ε

. (3.5)

The parameter ε > 0 has been placed to increase robustness of the solution. The developed
algorithm further splits the optimization function into two to decrease computational time. For the
details of implementation aspects, we refer supplementary document provided by [23]. Using the
package, we further drop darkfield (D) computation and estimate only baseline drift B and shading
components S. This choice results in faster computation without losing denoising quality. Also, we
have observed that the effect of darkfield quite negligible in our viral labeled images.

3.1.2 Contrast Enhancement

Spoiled by background fluorescent, neuron-specific fluorescent signals appear with low contrast
than what is expected in a clean confocal image. Although background subtraction achieves an im-
provement in signal-to-noise ratio, a contrast enhancement step is also applied in our preprocessing
pipeline. Here, we take a heuristic approach and apply linear contrast stretching. We allow some
level of saturation in both dark and light pixels, thus amplifying the fluorescent emitted from neural
structures. For a pixel xi, i ∈ {1, N} in an image I where N is the number of pixels, {pu, pl} being
the upper and lower percentile of which saturation allowed and n is the bit depth, the contrast
stretched pixel value x∗i is obtained by:

x∗i = (xi − pl)
2n

pu − pl
. (3.6)
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Allowing a certain level of saturation and using percentile rather than maximum and minimum
intensity values is an important factor for making the algorithm robust to outliers. Although the
order of contrast enhancement is not important, it is observed that applying it before and after
background subtraction in an iterative way may improve fluorescent signal quality for some images.
That is the main reason why preliminary contrast enhancement is left as an optional step. In our
pipeline, we choose lower and upper percentile as 2% and 98% respectively.

3.1.3 Obtaining Piecewise Constant Image

Edge-aware image operations are of the hot topics in low-level computer vision research due to
its applicability to wide range of problems from image manipulation (i.e., by means of albedo
recovery) to image analysis (e.g., segmentation of desired homogeneous regions) [108, 109, 110,
111]. Natural images have sparse characteristics in a transform domain, and they generally contain
set of regions with uniform color and shading variations. However, they also include textural details
that play an important role in identification of their unique characteristics. For our problem, we
desire to increase pseudo-color homogeneity (i.e., viral diffusion homogeneity) in labeled neurons
so that information loss by partitioning of neurons can be avoided. Yet, we also desire to preserve
thin dendritic structures and discourage any blurring operation. This poses a challenging task as
filtering based approaches, though operate fast, are experimented to be not sensitive enough for
such problems as they further blur the input image. Therefore, we take an alternative approach
and develop an efficient image flattening algorithm by proximal optimization. We exploit inherent
sparsity by means of weighted `1-norm total variation regularization where pixel-wise weights are
designed to plummet intensity variation of homogeneous regions, yet amplify pseudo-color changes
(e.g., dendrites). Our proximal image flattening algorithm exploits the strength of non-smooth
convex optimization to reach blazing processing speed (i.e., up to sub-second processing speed for
a single plane).

We formulate our problem of recovering piecewise flat image If ∈ <nxm as minimization of a
weighted anisotropic TV function from an input image Iin ∈ <nxm:

Min
If

(
n∑
i

m∑
j

wi,j‖Ifi,j − I
in
i−1,j‖1 + wi,j‖Ifi,j − I

in
i,j−1‖1

)
, (3.7)

such that AIf = Iin,

We relax the constrained optimization by turning it to minimization of penalized objective func-
tion where optimal solution is sought at the proximity of Iin:

Min
If

(
n∑
i

m∑
j

1

2
‖(Ifi,j − I

in
i,j)‖22 + wi,j‖Ifi,j − I

in
i−1,j‖1 + wi,j‖Ifi,j − I

in
i,j−1‖1

)
. (3.8)

As discussed in the Section 2.2, proximal algorithms offer an efficient solution for optimizing
functions with nonsmooth regularization and smooth convex data fidelity term. Here, we opt for
1-d taut-string based [112] modular optimization algorithm implemented by Barbero and Sra [26].
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Figure 8: Illustration of taut-string solution for the weighted TV − `1 problem: Blue indicates the
shortest path (minimizer) of the problem constrained by weights wi shown by red (image source
[26]).

Weighting is the most important factor as it will enable expected flattening of homogeneous regions,
but also preserve salient details. Inspired by [27], we assign exponentially high weights for a pixel
whose color difference between neighbouring pixels is low, and low weights if that pixel has high
color gradient. This enables over-smoothing of pixels with similar colors to compensate assigned
high weighting term and preserves pixels with distinct colors by pushing piecewise points even
farther:

wi,j = exp

(
− γ

(
‖Lfi,j − L

in
i−1,j‖22 + ‖L

f
i,j − L

in
i,j−1‖22

))
, (3.9)

where L represents an image in CIELab color space and γ > 0 denotes scalar weighting term
heuristically chosen to be in the range {5, 25} after some experimentation. This hyperparameter can
be modified according to the image at hand. For example, setting γ = 24 for confocal stacks and γ =

8 for natural images was found to be enough to obtain a satisfactory flattening effect. Comparing
previous work [27] that is based on split-Bregman iteration, our method improves processing speed
up to 50 times while obtaining comparable flattening effect. The reason is the simple geometric
interpretation provided by taut-string minimization. This formulation of total variation optimization
allows us to simplify our problem and obtain very efficient solvers (O(n)) surpassing state of the
art. At this point, weighted taut-string TV − `1 minimization algorithm will be briefly explained.

Weighted TV − `1 problem with a least-squares data fidelity term can be defined by:

Min
x

1

2
‖x− y‖22 +

n−1∑
i=1

wi‖xi+1 − xi‖1, (3.10)

where pixelwise weighting scalar wi > 0. In the implementation, dual of this expression is
preferred as it allows simpler formulation of the optimization function (see [26] for derivation),

Min
u

1

2
‖DTu‖22 − uTDy such that ‖ui‖1 ≤ wi ∀i | 0 < i < n, (3.11)

where D is the total variation inducing matrix with all zero elements except di,i = −1 and
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di,i+1 = 1 | 0 < i < n. The function is further transformed by setting u0, un ← 0,

Min
u

n∑
i=1

(yi − ui + ui−1)
2 such that ‖ui‖1 ≤ wi, ∀i | 0 < i < n, (3.12)

by performing change of variables s = r − u where r ,
∑
i yi we obtain,

Min
s

n∑
i=1

(si − si−1)2 such that ‖si − ri‖1 ≤ wi, ∀i | 0 < i < n, s0 = 0, sn = rn. (3.13)

Theoretically Eq. 3.13 and the following taut-string formulation can be shown to have the same
minima (see [113] for the proof):

Min
s

n∑
i=1

√
1 + (si − si−1)2 such that ‖si − ri‖1 ≤ wi, ∀i | 0 < i < n, s0 = 0, sn = rn. (3.14)

Taut-string interpretation of the minimized objective in Eq. 3.14 is not intuitive, but it is actu-
ally the euclidean length of a piecewise constant line through the points (i, si). As a result, this
formulation aims finding the minimum length of a string stretching between s0 and sn. In Figure
8, visualization of the shortest path (taut-string solution) is shown with blue color whereas red in-
dicates weights constraining the objective function and dashed line as cumulative sum of the input
signal (r). At this stage, determination of the shortest line can be performed by applying linear
geometric tricks. We refer [26] for details of the geometric implementation. In the results Section
4, effects of our piecewise image recovery on confocal fluorescent stack and natural images will be
shown.

3.2 Soft Segmentation

Inspired by Tan et al. [25], soft segmentation is posed as an optimization task where opacity values
for each pixel and for each pseudo-color label are estimated assuming Porter-Duff alpha composit-
ing model as the forward model. Optimization task is formulated as ridge (i.e, `2-norm) and TV −`2
regularized least-squares, and it is carried out using L-BFGS-B algorithm [84]. We exploit a fluo-
rescent image prior and compute convex polyhedron containing all pseudo-colors, then vertices of
this polyhedron progressively contracted to find vertices that correspond to distinct pseudo-colors
observed in the image stack. This step requires user input to provide the number of desired (or
expected) vertices. The reason why the convex hull based approach is preferred over density-based
is due to the prior information we have about the distribution and characteristics of fluorescent
data. Unlike images of natural scenes or objects that are dominated by reflectance, stacks obtained
by fluorescent imaging posses several challenges from clustering analysis point of view. In the latter,
pixels corresponding fluorescent emitting objects are mainly concentrated outer part of the mani-
fold close to the bounding surface (i.e., background noise and biological noise has lower intensity
values and is located in the inner regions of the space formed by pixel intensity values). This forma-
tion creates non-convex clusters and complicates the unsupervised segmentation task. Furthermore,

25



Soft Segmentation of Viral Labeled Neurons

A B C

Figure 9: Clustering distinct fluorescence labels: (A) original image, (B) k-means clustering results
for k=7, (C) fuzzy c-means clustering results for 7 clusters. Bottom: Close-up views of yellow neu-
ron, for both k-means and fuzzy c-means, it is unidentified due to its low density comparing other
pseudo-colors.

as we aim to reconstruct neurons with all possible distinct fluorescent labels, density bias problem
caused by the unbalanced density of different pseudo-colors becomes another big issue that has
to be addressed [39]. As illustrated in Figure 9, the neuron labelled with yellow fluorescent color
(A) is not identified by k-means (B) and fuzzy c-means clustering (C). In below sections, we will
first describe how distinct pseudo-colors are determined and explain modified Porter-Duff model
that is utilized as the forward model in our optimization function. Then we present the details of
algorithm employed to obtain soft segments.

3.2.1 Determining Fluorescent Labels: Convex Polyhedron Vertices

The vertices of the polyhedron encapsulating image pseudo-colors in sRGB space, in other words
distinct fluorescent labels, are determined by progressive hulls, a mesh simplification technique
where mesh edges are contracted to vertices by linear optimization such that new vertex adds
minimal volume to the hull at the previous iteration [114, 115]. In our pipeline, we employ the im-
plementation of [25], this formulation of the problem by iterative contraction and merging results
in robust and fast simplification of the hull. In addition to its efficiency, vertex-based computation
of pseudo color labels ensure we will not miss any fluorescent label. We experimented an extreme
case where there was only one pixel present in the in the image for a randomly chosen label. Since
the vertices encapsulate all existing colors, a single pixel was enough to discover that fluorescence
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Figure 10: Example results of automatic palette calculation: Pseudo-color labels computed accord-
ing to user-chosen number from convex hull vertices of the same image. It retrieves vertices of the
convex polyhedron that encompass the all data instances.

label. Therefore, we can claim that vertex-based automatic palette computation outperforms main-
stream clustering methods such as k-means and fuzzy c-means four fluorescent image processing,
and theoretically all distinct pseudo-colors are guaranteed to be revealed. To increase processing
speed, data in maximum, minimum and mean projection of the stack is used to find polyhedron
vertices. It has been seen that this approach speeds up processing up to ten times. An example
pseudo-color palette calculation for different vertex numbers can be seen in Figure 10.

3.2.2 Weighted Porter-Duff Model

Porter-Duff equations are the de facto compositing models used in computer graphics. In the orig-
inal paper [24], author’s propose a set of operations based on Lie algebra [116] that can handle
compositing of RGBA images satisfying realistic appearance. Here, fourth channel A encodes opac-
ity information (i.e., contribution of that color to the appearance of that pixel). Let ai ∈ [0, 1] and
ci ∈ [0, 1] be the alpha and sRGB color values of a pixel in ith image, i ∈ 1, n where n is the number
of images to be composited. Assuming the base image used in compositing is opaque with color c0
(i.e., for our fluorescent images, we assume c0 = [0, 0, 0]T ), color values of the resulting final image
can be obtained by Porter-Duff over-compositing as:

c∗ = cn +

n∑
i=1

[
(ci−1 − ci)

n∏
j=1

(1− aj)
]
. (3.15)

Final opacity values of all pixels become unity as we assumed the black background alpha layer
to be pure opaque at the outset. In this formulation, our task reduces to the estimation of alpha
layers ai for each discovered pseudo-color i by inverting Eq. 3.15. Let us call each of the combined
image chunks (i.e., alpha layers) as soft segments. As stated in [25], for i > 4 the problem becomes
under-determined and requires an optimization framework to obtain a solution. Before proceeding
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to solution, we further modify the model to encourage sparsity and penalize overlaps between soft
segments by adding an extra weighting term wi:

c∗ = cn +

n∑
i=1

[
(ci−1 − ci)

n∏
j=1

(1− wjaj)
]
, (3.16)

such that, wj = exp

(
−
∑n−1
k ‖clabj − clabk=1‖22

2σ

)
,

where σ is hyperparameter heuristically set to 2. Our weighting term wj brings novelty to orig-
inal Porter-Duff model used by Tan et al., [25] by discouraging overlaps between segments (Note:
clabi indicates CIELab transformed pseudo-color vertice values). Considering color vertices as ob-
jects and `2 color difference between vertices as pairwise distances, weighting can be considered
to mimic gravitation-like force. Affected by this, pixels of any pseudo-color label are pulled and/or
pushed in a nonlinear fashion depending on the overall force imposed on them. Consequently, this
gravitation-like force creates relatively more separated clusters comparing the original Porter-Duff
forward model.

3.2.3 Obtaining Soft Segments by Optimization

Energy function is designed to estimate spatially smooth soft segments without large gradients, and
segments with minimum inter-class overlaps. Let Es be the function to be minimized, optimization
for soft segments ai : ai ∈ [0, 1], i ∈ {1, n} is formulated as:

Min
ai

(
λlsEls(ci, ai) + λridgeEridge(ai) + λ`2−TV E2

`2−TV (ai)

)
, (3.17)

where λ∗ indicates scalar weight factors, and data fidelity term for least squares Porter-Duff model
is denoted by Els; Eridge and E2

TV−`2 are ridge regularization and total variation term penalizing
large spatial gradients. These energy terms are defined by:

Els ,
1

3

∣∣∣∣∣
∣∣∣∣∣cin − cn +

n∑
i=1

[
(ci−1 − ci)

n∏
j=1

(1− wjaj)
]∣∣∣∣∣
∣∣∣∣∣
2

2

(3.18a)

E2
`2−TV ,

1

n

n∑
i=1

(∇ai)2 (3.18b)

Eridge ,
1

n

n∑
i=1

(ai)
2 (3.18c)

Since the problem is ill-posed and there exist infinitely possible solutions if no restrictions are set,
we require regularizations complementing least-squares data fidelity term. In the energy function,
ridge and squared `2-norm total variation regularization are chosen as the regularizers. Although we
had several attempts for `1-norm based regularization, solving the formulated large-scale nonlinear
and non-smooth energy function turned out to be cumbersome and unstable. Thereby motivating
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A B C

Figure 11: Effects of hyperparameters on two soft segments recovered from the synthetic image
shown on left: (A) weights λls : 40, λridge : 2, λTV

`2
: 20, (B) λls : 40, λridge : 10, λTV

`2
: 20,

(C) λls : 40, λridge : 2, λTV
`2

: 1. It is clearly visible that increasing weight of ridge regularization
results in unbalanced segments, on the other hand, decreasing λTV

`2 encourage higher gradients.
Computation times also varies according the choice of weights. In the case (B), processing speed is
twice faster, and in (C) twice slower.

us to employ convex and smooth regularization schemes. Ridge (i.e., Tıkhonov) is a widely used
regularizer discouraging over-fitting in the optimization step. Since the posed task is unsupervised,
ridge regularization outputs inherently bounded segments and discourages overlaps between them.
On the other hand, squared TV − `2 term penalizes high gradients and creates smooth segments. It
also enables natural inpainting and assists merging of divided segments. We should note that scalar
weighting (λ∗) hyperparameters play a very important role in optimization and machine learning
tasks. To ensure successful recovery of soft segments, we reserve several z-stacks as the validation
set for manual tuning of λ∗ values. After our experiments, we found that, λls = 40, λridge = 2 and
λTV−`2 = 20 values gave satisfactory results. An example figure showing the effects of weighting
hyperparameters can be viewed in Figure 11.

Due to relaxation of pixel values, the solution can be posed as a bound constrained nonlinear
optimization problem where pixel values are restricted to [0, 1] range. As in Tan et al.’s [25]
implementation, active set based L-BFGS-B (i.e., limited-memory and bound-constrained BFGS)
is employed in our optimization task [84]. Similar to other quasi-Newton algorithms, L-BFGS-B
does not require the Hessian matrix, but rather an approximation Bk is used and updated in each
iteration. Previously explained L-BFGS [117] for large-scale optimization is central in L-BFGS-B as
well. L-BFGS-B is an extended version of original work to allow optimization of variables xn with
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bound constraints of type ln ≤ xn ≤ rn. Original implementation written in FORTRAN is provided
by the authors [118], moreover several python wrappers can be also found in scientific computing
libraries such as Scipy.

Pseudo-code of BFGS and L-BFGS quasi-Newton approximation were explained in Section 2.2.
At this point, we can briefly provide the details of L-BFGS-B algorithm that exploits BFGS iteration
to approximate Hessian matrix. It should be noted that applications of L-BFGS-B are not limited to
constrained optimization, and it can be used to minimize constrained problems without worrying
about the active set of variables. Referring the quasi-Newton update obtained by Taylor expansion
at Eq. 2.5, function f(x) around the neighbourhood of xk can be modeled by:

mk(x) = fk + (∇T fk)(x− xk) +
1

2
(x− xk)TBk(x− xk), (3.19)

where Bk denoted limited-memory Hessian approximation of BFGS. Here L-BFGS-B algorithm
steps can be given as:

1. Predefined tolerance condition is controlled. Let proj(.) denote gradient projection defined
as:

proj(x, l, u) ,


li, xi < li

ui, xi > ui ,

xi, o.w.

(3.20)

then iteration is stopped if:

‖proj(xk −∇fk, l, u)− xk‖∞ < Tol, (3.21)

where Tol indicates the predefined tolerance value given by user input. In our case, we found
Tol in the range of [10−4, 10−5] sufficient to reach the desired outcome.

2. Cauchy point is computed as described in [84]. CP is used to determine active and free vari-
ables among x that restrict search space.

3. Subspace minimization and strong-Wolfe line search: mk is minimized in an unconstrained
fashion for the determined free variables. Search direction is computed using conjugate gra-
dient and step length is determined using backtracking to satisfy the strong-Wolfe condition
(see [77]).

4. Limited memory BFGS Hessian approximation (Bk+1) is computed by storing firstm variables,
then the algorithm continues to the next iteration.

After determination of pseudo-color vertices, segments for each vertex are estimated sequen-
tially. In other words, we recover segments from each 2d color plane in z-stack one by one. This
choice is due to computational restrictions. Considering the size of the viral labeled images used in
our experiments, minimizing approximately 108 variables took its toll and caused memory errors.
Since the vertices are globally determined, this actually brings several advantages from practi-
cal point of view. Firstly, it is possible to check the results while the computation is in progress.
Secondly, it gives the possibility to segment only from specific planes chosen by the user. Since
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pseudo-color palette is computed globally, proposed plane-wise segmentation does not skip any
fluorescence label.

3.3 Post Processing

After recovery of soft segments, one might require binary masks of the actual neuron depending
on the application at hand. For the case of image-based identification of neurons from its dendritic
arborization, it is desirable to have a denoised 3d reconstruction where pixels not belonging to
neurons are masked out of the stack. Unlike previous works employing a trained deep network
to augment nonlinear morphological processing [14], here we develop an end-to-end framework
using only nonlinear mathematical morphology with only a few hyperparameters that need tuning.
This enables fast processing of the whole stack in a few seconds.

x

x

a dcb e

b c d e

Figure 12: Step by step post processing algorithm: (a) optional median filtering, (b) dilation, (c) ap-
plying distance transform and combining connected components closer than a predefined distance
threshold, (d) preserving N largest components and removing smaller ones, (e) relaxing distance
transform threshold and merging components to create the large mask. Lastly, the largest connected
component is used as a mask to segment hard boundaries.

As the first step, a 3d median filter is applied to remove impulse noise. This step is optional and
the user is asked to decide whether to filter the stack or not. We observed that median filtering ac-
tually adversely affects images that are not spoiled by impulsive noise. Therefore this decision is set
as a hyperparameter in our algorithm. We also observed filtering applied to a local neighbourhood
hxhxh , h ∈ {1, 3} gives enough satisfactory results. As the second step, each voxel is dilated using
a 3x3x3 structural element, and then using distance transform connected components closer to 3
voxels are merged. At this point, it is necessary to remove relatively small objects, thus largest N
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Parameter Names Explanation
w_fidelity_lsl2 weight of L2-norm least-squares data fidelity term
w_ridge weight of ridge (Tikhonov) regularization
w_tvl2 weight of L2-norm total variation regularization
threshold_opacity clips opacity values below the threshold to 0 before saving
stack_path directory containing input stack
output_path directory to save results
automatic_color_vertices set 1 to compute pseudo-color palette, 0 to manually indicate
number_soft_segments number of output segments
manual_vertices if automatic computation set 0, indicate pseudo-colors
drop_color ignore one of the vertices when computing soft segments
FAST disable weighting term in the optimization function
SAVE_COLOR also saves colored versions of soft segments: 1 or 0
start_plane compute segments from substack starting from, set -1 to disable
end_plane compute segments from substack until, set -1 to disable
level_contrast_enhancement within 1, 10, choose -1 not to enhance contrast
level_flattening choose a value > 1, you may get assertation error if too high
iterations_flattening flatten several times (e.g., 2-4)

Table 1: List of parameters that can be directly changed from the json file

connected component is preserved and others are simply set to zero. This N is the second parameter
that needs user input. Later in our experimentation, we found out that N in the range {500, 800}
performs equivalently well, without causing much distortion. Since our aim is to create a mask, we
relax our distance transform threshold this time and combine connected components smaller than
8 voxels. This over-dilation will enable preservation of the complete dendritic tree without causing
any division. As the last step, we take the largest connected component obtained at the previous
step and apply it as a mask onto the original stack to recover the full branching of the neuron. It is
striking to realize that applying nonlinear mathematical operations to obtain a mask actually results
in more accurate and robust reconstruction than applying the pipeline directly on the image stack.
Step by step illustration of the process is also illustrated in Figure 12.

3.4 Implementation

During implementation, we exploit advantage of our Debian based operating system (Ubuntu
16.04) and create a Conda python environment that includes the whole soft segmentation pipeline
except BaSIC background subtraction and post-processing Matlab script. We use original BaSIC
ImageJ plug-in that gives fast background subtraction (i.e., approximately 5 min for an image
stack of size 150x1000x1000x3). Post-processing is implemented in Matlab by using mathemat-
ical morphology functions in the image processing toolbox. To fully exploit its speed advantage,
we recommend using a Matlab version higher than R2016a (i.e., processing takes approximately
1 min for an image stack). The software is intended to be user-friendly and open source so that
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it can be explored freely by neuroscientists. Full code including the external ImageJ BaSIC plugin
is publicly available at github.com/elras/SoftsegmentNeurons and github.com/farrowlab/Neuron-
Softsegmentation. For easy modification of parameters, we decided to use JSON data interchange
format. Since parameters are parsed from "params.json", it may not be even necessary to modify
the code itself. In the Table 1, full list of of parameters included in the json file and corresponding
explanations are provided.
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4 Results and Discussion

In this chapter, experiments designed to evaluate the proposed method, the outcome of these ex-
periments, and discussion of the results are presented. Three types of experiments are carried out.
Firstly, quantitative analysis on two synthetically generated image stacks with the corresponding
ground truth is computed, and our method is compared with the state of the art work on brainbow
volume segmentation [1]. Then, we move to qualitative experiments and apply our method to real
image datasets in addition to the synthetic stacks. In this section, full reconstruction of neuronal
branching from several confocal microscopy stacks hindered by severe noise is presented. Also, sev-
eral partitioning-based clustering algorithms, k-means, fuzzy c-means and meanshift is compared
against ours using a highly overlapping 2d plane (i.e., the maximum projection of a stack is used as
the input image). Complementing the analysis of soft segmentation, we also show results of each
step in the pipeline to illustrate effects of prepossessing. Before going through the experiments,
below we provide mathematical definitions of similarity metrics employed to measure the accuracy
of compared algorithms.

4.1 Metrics

Quantitative evaluation is performed using three standard metrics employed in image segmenta-
tion: Probabilistic Rand index (PRI) [119], variation of information (V I) [120] and Dice coeffi-
cient (DICE). Details of the evaluation metrics are given below.

Probabilistic Rand Index
Probabilistic Rand index measures consistency between two segmentation. Let li and l′i two set of
label assignments from the sets S and S′for a pixel i ∈ {1, N}, the index can be defined by:

PRI(S, S′) ,
1(
N
2

) ∑
i,j | i 6=j

[
I(li = lj)I(l

′
i = l′j) + I(li 6= lj)I(l

′
i 6= l′j)

]
, (4.1)

where I(.) is the identity function [119]. Higher the PR value is the closer the segmentation to
the ground truth.

Variation of Information
Variation of information is an information theoretic dissimilarity metric where the smaller value
indicates better segmentation. The idea is based on computing conditional entropy of one seg-
mentation given the other one. Let H(S) denote entropy of the label set S with corresponding
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probability distribution function PS , V I can be defined by [120]:

V I(S, S′) , H(S|S′) +H(S′|S), (4.2a)

H(S|S′) , −
∑
L

PS|S′ log(PS|S′), (4.2b)

where L is the set of distinct pixel labels, or equivalently using joint entropy:

V I(S, S′) , H(S) +H(S′)− 2H(S, S′), (4.3a)

H(S, S′) , −
∑
L

PS,S′ log(PS,S′), (4.3b)

Sorensen-Dice Coefficient
Sorensen-Dice coefficient, or simply Dice coefficient, is a similarity metric measuring the level of
match between computed and provided ground truth labels. It is also known as F1 score in statistical
analysis and defined by:

Dice ,
2TP

2TP + FP + FN
, (4.4)

where TP, FP and FN is used to denote true-positive, false-positive and false-negative labeling
respectively.

4.2 Quantitative Experiment Results

Metrics Evaluation for Exp-1 (Our Method)

S1 S2 S3 S4 S5 S6 Mean Std

PRI 0.9926 0.9910 0.9799 0.9978 0.9960 0.9582 0.98 0.01
VI 0.0355 0.041 0.0819 0.0122 0.0207 0.1490 0.056 0.05
DICE 0.9981 0.9977 0.9529 0.9949 0.9995 0.9990 0.99 0.01

Metrics Evaluation for Exp-1 (Sumbul et al.)

S1 S2 S3 S4 S5 S6 Mean Std

PRI 0.7597 0.7726 0.7406 0.7526 0.7471 0.7285 0.75 0.01
VI 0.1968 0.3971 0.4423 0.3492 0.2573 0.7608 0.4 0.2
DICE 0.3561 0.3511 0.3682 0.3287 0.3351 0.3511 0.34 0.01

Table 2: Evaluation results for 6-neuron segmentation task computed using PRI, VI and DICE met-
rics. Our method is shown to clearly outperform the algorithm presented in [1].

To evaluate the performance of our method, two synthetic image stacks are generated with 6
and 8 neurons with distinct fluorescent labels. Each has dimensions of 200x1024x1024x3, and is
rendered using sRGB color space. Images are created using sparse viral labeled monochrome images
that are manually traced from previous confocal stacks. Traced neurons are heuristically colorized
(i.e., by using 6 and 8 distinct pseudo-colors) and converted to RGBA where intensity values are
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Metrics Evaluation for Exp-2 (Our Method)

S1 S2 S3 S4 S5 S6 S7 S8 Mean Std

PRI 0.9855 0.9565 0.9935 0.9995 0.9911 0.9831 0.9794 0.9999 0.98 0.01
VI 0.0630 0.0565 0.0342 0.1256 0.0414 0.0771 0.0899 0.0002 0.06 0.03
DICE 0.9963 0.9970 0.9984 0.9926 0.9978 0.9958 0.9948 0.9999 0.99 0.002

Metrics Evaluation for Exp-2 (Sumbul et al.)

S1 S2 S3 S4 S5 S6 S7 S8 Mean Std

PRI 0.7613 0.8119 0.7328 0.7701 0.7531 0.7598 0.7663 0.7843 0.76 0.02
VI 0.1969 0.3348 0.4100 0.2748 0.3165 0.2902 0.3024 0.2775 0.3 0.06
DICE 0.3376 0.3073 0.3464 0.2987 0.3279 0.3705 0.3287 0.2906 0.32 0.02

Table 3: Evaluation results for 8-neuron segmentation task computed using PRI, VI and DICE met-
rics. Similar to the experiment with 6 neurons, our method successfully extracts segments and
results are quite close to the ground truth locations.

randomly assigned for each layer from a range of values. Subsequently, they are merged using
Porter-Duff model where fixed opacity value 0.8 is assigned to each segment. To simulate realistic
imaging conditions, we also added zero-mean Gaussian noise whose standard deviation value is
chosen after visual inspection. Segmentation results can be viewed in Table 2 for 6-neuron case and
in Table 3 for 8-neuron case. We also visually illustrate maximum projection of results in Figure 13
for 6 segments and Figure 14 for 8 segments. In these two figures; GT, S and O indicate the max-
imum projection of ground truth, Sumbul et al.’s [1] and our segmentation respectively. Columns
correspond to recovered neurons with distinct spectral labels. We show that our soft formulation of
the segmentation task clearly outperforms the algorithm proposed in [1] for both 6 and 8 neuron
cases.

4.3 Qualitative Experiment Results

In this part, enhancing effects of background subtraction and image flattening are illustrated on
captured viral labelled neuron image stacks. We also apply classical clustering algorithms, k-means,
fuzzy c-means and meanshift on the maximum z-projection of synthetically generated image stack
with 8 neurons. This creates a quite challenging task with highly occluded segments. Our aim is to
show the capabilities of TV and ridge regularization, and illustrate the proposed method actually
performs better than traditional clustering algorithms on the formulated 2d image segmentation
task. At the end of this section, results for full 3d reconstruction of confocal neural trees labelled
with pseudo-green, orange, cyan, magenta and yellow colors are also presented. From these, green,
orange and cyan neurons are successfully reconstructed, but results for the remaining neurons are
found to be less satisfactory. Binary masks for all these neurons are obtained by the designed post-
processing pipeline.
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A B C D E F

GT
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S

Figure 13: Soft segmentation results for the experiment with 6 neurons: On the left max-projection
of the generated stack, (GT) max projection of ground truth, (O) max projection of results of our
method, (S) segmentation results of [1] for each neuron.

A B C D E F

GT
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G H

Figure 14: Soft segmentation results for the experiment with 8 neurons: On the left max-projection
of the generate stack, (GT) max projection of ground truth, (O) max projection of results of our
method, (S) segmentation results of [1] for each neuron.

4.3.1 Background Subtraction

In figure 15, maximum projections of red and blue channels of a stack are shown before (A) and
after background subtraction (C) applied. In column (D), the computed mean x/y plane flatfield in-
tensities, and baseline signal along the z-direction are plotted. Since intermediate spectral channel
(i.e., green channel) has less deterioration due to noise, it was not even necessary to apply back-
ground subtraction. Column (B) shows results after processing of traditional rolling-ball algorithm
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A B C D

Figure 15: Effect of background subtraction on a sample image stack: (A) An image plane from the
input stack for the first and last spectral channels, (B) results of sliding paraboloid ImageJ plugin
[121], (C) corresponding channels after BaSIC background subtraction, (D) computed average flat
field intensities for x/y plane and baseline signal along z direction.

(implemented in ImageJ) [121]. As can be seen, It is relatively less robust to noise and background
removal is not as effective as BaSIC.

4.3.2 Piecewise Constant Image Recovery

Although background subtraction decreases bio-induced noises such as autofluorescence and un-
intended staining of glia, it does not offer any solution for non-uniform diffusion of viral vectors
into neurons. As explained previously, additional edge-aware flattening is carried out and this task
is set as piecewise image recovery by weighted L1-norm total variation optimization. In Figure 16,
the effect of our piecewise image flattening is shown on a sample image plane. Figure 17 shows
plots for the intensity profile along the yellow line for the blue channel of the image plane shown in
Figure 16. Lastly in Figure 18, we show results of our flattening on natural images retrieved from
Berkeley segmentation benchmark [122]. The preservation of salient details and cartoonization of
homogeneous regions is strikingly exposed in these figures.

4.3.3 Comparison with Image Clustering Techniques

Previously, we compared our algorithm with [1] using two synthetically generated image stacks
containing 200 color image planes. Here we increase the difficulty and compare our method with k-
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A B

Figure 16: Flattening a viral labeled image plane before (A) and after (B) processing. Two example
windows are highlighted to show details of flattening.

means, fuzzy c-means and meashift using an extrame image, the maximum projection of the image
stack with 8 neurons. Therefore, we turn our task into segmentation of a densely overlapping 2d
image plane. In Figure 19, results can be inspected for each algorithm where columns represent
distinct neurons: (A) segmentation results for k-means, (B) fuzzy c-means, (C) meanshift and (D)
for our method. As clearly shown, only our method is able to segment all distinct pseudo-color
labeled neurons.

4.3.4 Full Neuron Reconstruction

An automatic post-processing algorithm is also carried out to create masks form soft segments.
In this section, successful post-processing of three neurons labelled with green, orange and cyan
(Figure 20) are shown. In figure 21, we also illustrate segmentation of magenta and yellow neurons.
Their full branching is not recovered due to the severe deterioration in staining.

4.3.5 Computation time

Although real-time segmentation and reconstruction are not aimed, improving speed constraints
of previous works was a central idea in the project. Therefore, in each step, we avoided heavy
computations and employed vectorized algebraic data operations without loops. In the preprocess-
ing step, rather than applying computational expensive non-local collaborative filtering approaches
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BA

Figure 17: Illustration of flattened profile: (A) a local region clipped from blue channel, (B) resulting
piecewise-flat intensity profile for the line indicated by yellow color.

that depend on patch-matching, we employed an efficient proximal algorithm when solving `1-
norm optimization. In Table 4, the approximate time taken by each step in the pipeline is tabulated
and compared with the previous work. We use a real image stack with dimensions 150x960x960x3
when carrying out the test.

Steps Appr. Time (min)
O S1 S2

Preprocessing 10 360 10
Segmentation 500 2400 200
Post-processing 2.5 - -
Total 512.5 2760 210

Table 4: Comparison of approximate processing times for (O) our algorithm, (S1) algorithm in
[1] and (S) results of [1] after replacing the preprocessing by our preprocessing. As a result, our
preprocessing increases processing speed of [1] by more than 10 times without negatively effecting
its results.
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Figure 18: Flattening applied on Berkeley segmentation benchmark [122]: Results for three sample
images are shown for illustrative purposes.

A

C

B

D

Figure 19: Qualitative comparison with 2d image segmentation algorithms: Results of (A) k-means,
(B) fuzzy c-means, (C) meanshift, and (D) our algorithm. Our algorithm is able to separate the
highly overlapping imge with 8 labels.
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Input stack Soft segmentation Post processing

Figure 20: Obtaining hard segments: An example of green (first row), orange (middle row) and cyan
(last row) labeled neuron case. Max-projection of the image stack, soft segmentation of neurons,
and hard segment after post processing shows successfully 3d Reconstruction performed by our
algorithm from noisy input images.

4.4 Discussion

Quantitative experiment results for both 6 (Table 2) and 8 neuron (Table 3) cases show success-
ful segmentation of spectral viral labeled neurons very close to ground truth values. For synthetic
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Input stack Soft segmentation Post processing

Figure 21: Obtaining hard segments: Challenging case, example of yellow (first row) and magenta
(second row) labeled neurons. For magenta case, last 20 planes are excluded not to include other
neuron somas. Due to unspecific labeling of these two neurons, results are not satisfactory.

dataset, it is not even required to carry our further post-processing, and labels can be obtained
by simply thresholding operation. The success of the proposed pipeline can be attributed to its
flexibility as soft layers computed by inverting the modified Porter-Duff model preserve available
information. On the other hand, pixel-level classification (i.e., hard segmentation) strictly assigns
a label to a pixel considering local neighbourhood. As can be seen from Figure 13 and 14, [1] is
unable to preserve very thin dendritic trees and at the overall the segmented neurons are parti-
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tioned. In terms of computation time, the proposed approach also enables much faster processing
comparing state of the art (Table 4). We also observe that when our preprocessing is replaced with
the one proposed in [1], total processing time decreases an order of magnitude.

As stated at the outset, we face four main challenges in viral labeled confocal image stacks.
Densely occluded structure of neurons and their thin dendritic structures are addressed by the
design of soft segmentation, yet heavily background noise and inhomogeneous diffusion of viral
vectors decrease the quality of results. To enhance the details without distorting dendritic arbors,
BaSIC background subtraction [23] method is used and a weighted L1 norm total variation flat-
tening algorithm is proposed. In Figure 15, results after BaSIC background correction (column C)
show superiority comparing classical rolling-ball algorithm (column B). As can be seen from (D),
the algorithm is able to correct non-uniform illumination caused by stitching as well. It can also
shift the baseline intensity along the depth dimension for non-biased segmentation of neurons (D).
As our algorithm is applied to each 2d image plane, correction of baseline drift along z directly
enhances the algorithm accuracy and processing speed greatly. The most surprising is the success
of the proposed image flattening algorithm. When applied to confocal stacks (Figure 16) or natural
images (18), it induces sparsity and flattens low-frequency color variations while preserving very
subtle details. This can be better observed in Figure 17 where the intensity profile of a spectral
channel along the yellow line plotted. Here, piecewise constant recovery is clearly visible.

Since the proposed algorithm is based on convex polyhedron of data points and corresponding
segments extracted for each vertex of this polyhedron, the method is able to extract segments
that are otherwise ignored by partitioning based algorithms such as k-means, fuzzy c-means and
meanshift. In Figure 19, for example, the neuron at the 3rd column is only segmented by our
method but failed to be recognized by others.

In Figure 20, we apply our algorithm in an end-to-end fashion to two image stacks and recon-
struct pseudo-green and pseudo-orange labelled neurons. Column A shows the maximum projection
of the image stack, column B is the max projection of soft segmentation result and column C illus-
trates corresponding x, y and z maximum projection of masks obtained after our post-processing.
The results show the successful reconstruction of whole neuron volume which can be directly used
for neuron type identification. Figure 21, on the other hand, illustrates reconstruction of two neu-
rons with nonspecific viral labeling. The resulting segments are not as satisfactory as in the previous
figure.
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5 Conclusion and Future Work

In this study, we developed a soft segmentation algorithm by estimating weighted Porter-Duff opac-
ity layers for each fluorescent label in order to extract dendritic trees without damaging them.
Number of soft segments (i.e., convex polyhedron vertices) are determined by progressive hulls
and optimization is performed with a ridge and squared TV − `2 regularized L-BFGS-B based least-
squares framework. Soft segmentation is augmented by a novel weighted `1 total-variation image
flattening and a post-processing pipeline designed using nonlinear morphological operators.

Firstly, a fluorescent image prior is proposed by stating that actual fluorescence emitting ob-
jects are distributed on the outer surface of the manifold formed by confocal images. Therefore,
fluorescent images are inherently different than reflective-component dominated natural images.
Exploiting this prior, expected fluorescent labels are estimated using vertices of convex hull of image
data points. In our case, these pseudo-color vertices enable discovery of distinct fluorescent labels
even if they are present in a single pixel.

Four main challenges are realized in viral labeled confocal images. Preprocessing consisting of
background subtraction, contrast enhancement and image flattening is put forward to address these
issues. Furthermore, image flattening is implemented using a modular proximal algorithm that gives
very promising results and decreases computational load up to 50 times comparing state of the art
[27]. We also show effectiveness of our image flattening via replacing preprocessing proposed in
[1] by ours and observe 8 to 10 times increase in processing speed as tabulated in Table 4.

Soft segmentation algorithm is quantitatively evaluated using two synthetically generated image
stacks with 6 and 8 neurons. Our implementation is also compared with previous 2d and 3d image
segmentation techniques. We observe clear increase in segmentation accuracy in all three metrics
used. Qualitative inspection of results also show that the soft segmentation is a risk-free way of
reconstructing neurons compared to hard segmentation. Processing speed of soft segmentation is
increased by initializing segments from results of the previous plane in z-stack. As consecutive
frames have similar pixel values, this heuristic encourage fast convergence to local minimum.

We speculate that the method can be further improved by:

• Formulating the optimization as a least absolute deviations (LAD) problem instead of least-
squares. It is known that for high dimensional data, euclidean loss may not give desired
outcome (i.e., curse of dimensionality).

• Applying sparsity enforcing regularizers in soft segmentation, TV − `1 and `1, particularly to
induce natural inpainting and smoothness.

• Studying global fluorescence priors that can be employed to recover non-local statistics during
optimization stage.

• Exploiting circular natural of hue to remove spectral salt and pepper noise. We observed that

45



Soft Segmentation of Viral Labeled Neurons

some image stacks have high impulsive noise that cannot be removed by image flattening due
to their high gradients. We apply 3d median filter in our post-processing, but this problem can
also be resolved by employing a weighted or hue-based circular median filter.

• Using conditional random fields (CRF) as the last step in soft segmentation. In recent years,
CRF has been shown to improve pixel-level details in segmentation tasks. Therefore, it would
be possible to consult graph-based correction after the main segmentation step.
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A Retinabow Protocol
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Figure 22: Schematic of the targeted neural circuits from retina to lateral posterior nuclei (LP) via
superior colliculus (SC). Firstly HSV virus vectors are injected to identify wide-field neurons which
take inputs from retinal ganglion cells. Then, three virus vectors corresponding red, green and blue
band emission are injected to create stochastic multi-color expression in ganglion cells

Injection of Rabbies Vectors
At the outset, floxed HSV was injected to the LP. This results in expression of TVA and protein G
in wide-field neurons that project to the LP. We wait 21 days for injections to be expressed. Then,
a mixture of different EnvA-coated and G-deleted fluorescent rabies virus were injected to SC that
will interact with neurons containing the TVA and protein G (Figure 22). Retinal ganglion cells hav-
ing synaptic connections with wide-field neurons will be labeled with different fluorescent proteins
randomly. This occur due to the retrograde transynaptic motion of rabies virus vectors. At the eighth
day following the rabies virus injection, retina was dissected and fixed in the PFA. Afterwards, the
immunostaing is performed to amplify emitted fluorescent signal (Figure 23).

Immunostaining
The primary antibodies recognizing BFP, mCherry, GCaMP6 and ChaT (for Starburst Amacrine cells
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Retina 
dissection Staining

Figure 23: Schematic of the processing of the retina. Immunostaining is necessary to amplify fluo-
rescence emission.

labelling) were firstly prepared and incubated with the whole-mount retina for 5-7 days. Then rel-
ative secondary antibodies conjugated with different fluorescent proteins (405, 555, 488 and 633)
were added and incubated overnight. After mounting, the retina will be ready for image acquisition.

Confocal Laser Scanning Microscopy Imagining
Zeiss LSM 710 microscope is used for confocal imaging of retinas. Images of the whole retina for
overview purposes were captured with a 10x (plan-APOCHROMAT 0.45 NA, Zeiss) objective with
settings: Zoom 0.7, 4x4-tiles with 0 to 15% overlap, 2.37 µm/pixel resolution. Close-up retinal
ganglion cell images used for processing purposes obtained with 63x (plan-APOCHROMAT 1.4 NA,
Zeiss) objective with settings: Zoom 0.7, 2x2-tiles (this is adjusted depending on the cell size) with
0 to %15 overlap. Resulting images have XY-resolution of approximately 0.38 µm/pixel and a Z-
resolution between 0.25 and 0.35µm/pixel. The Z-stacks scanned over approximately 50 µm in
depth.

57


	Abstract
	Acknowledgment
	Contents
	List of Figures
	List of Tables
	Introduction
	Problem Statement
	Research Proposal and Contributions
	Outline of The Thesis
	Mathematical Notation

	Background
	Related Work: Segmentation of Spectral Labeled Neurons
	Unsupervised Segmentation
	Interactive Segmentation
	Supervised Segmentation by Deep Learning

	Numerical Optimization
	Confocal Fluorescence Microscopy

	Proposed Method
	Preprocessing
	Background Subtraction
	Contrast Enhancement
	Obtaining Piecewise Constant Image

	Soft Segmentation
	Determining Fluorescent Labels: Convex Polyhedron Vertices
	Weighted Porter-Duff Model
	Obtaining Soft Segments by Optimization

	Post Processing
	Implementation

	Results and Discussion
	Metrics
	Quantitative Experiment Results
	Qualitative Experiment Results
	Background Subtraction
	Piecewise Constant Image Recovery
	Comparison with Image Clustering Techniques
	Full Neuron Reconstruction
	Computation time

	Discussion

	Conclusion and Future Work
	Bibliography
	Retinabow Protocol


%% This document gives an example on how to use the ntnumasterthesis
%% LaTeX document class.

%% Use short name MACS, MIS, CIMET, MTDMT, MIXD or MIS  
%% Language english or norsk
%% b5paper with oneside or twoside, you can set A4 if you want but you submit in b5

%% If you want print with the heading material on a4 paper you can use this format
%% \documentclass[MACS,english,a4paper,oneside,12pt]{ntnuthesis/ntnuthesis}

%% with the change to using DAIM we have a new option. include DAIM after english below removes the front page material so that you can then submit in the DAIM system. If you are wanting the front material remove DAIM and make sure you fill in the DaimData.tex file.
\documentclass[MACS,english]{ntnuthesis/ntnuthesis}
\usepackage[T1]{fontenc}
\usepackage[utf8]{inputenc}     % For utf8 encoded .tex files allows norwegian characters in the files. This can be dangerous if you change to a differnt editor.
%\usepackage[pdftex]{graphicx, hyperref}   % For cross references in pdf
\usepackage{graphicx}
\usepackage{hyperref}   % For cross references in pdf

% For smart references 
%    use \cref{label} and Caption and Number will be added automatically
\usepackage[capitalise,noabbrev]{cleveref} 

\usepackage{color}              % For colouring text 
\hypersetup{colorlinks=true,     
		linkcolor=blue,          % color of internal links (change box color with linkbordercolor)
    citecolor=blue,        % color of links to bibliography
    filecolor=blue,      % color of file links
    urlcolor=blue           % color of external links
		}
\usepackage{csvsimple}  % for simple table reading and display
\usepackage{url}
\usepackage{booktabs}
\usepackage{gnuplottex} %miktex option if using miktex on windows
\usepackage{rotating}


\definecolor{darkgreen}{rgb}{0,0.5,0}
\definecolor{darkred}{rgb}{0.5,0.0,0}

\lstset{        basicstyle=\ttfamily,
                keywordstyle=\color{blue}\ttfamily,
                stringstyle=\color{darkred}\ttfamily,
                commentstyle=\color{darkgreen}\ttfamily,
}


%Typesetting of C++ but not always stable in titles etc...
\newcommand{\CPP}[0]{{C\nolinebreak[4]\hspace{-.1em}\raisebox{.1ex}{\small\bf +\hspace{-.1em}+\ }}}

%\usepackage[table]{xcolor}% http://ctan.org/pkg/xcolor
%\usepackage[nomessages]{fp}
%\newlength{\maxbarlen}

\newcommand\databar[3][gray!20]{%
  \FPeval\result{round(#3/#2:4)}%
  \rlap{\textcolor{#1}{\hspace*{\dimexpr-\tabcolsep+.5\arrayrulewidth}%
        \rule[-.05\ht\strutbox]{\result\maxbarlen}{.95\ht\strutbox}}}%
  \makebox[\dimexpr\maxbarlen-2\tabcolsep+\arrayrulewidth][r]{#3}}

\newcommand{\com}[1]{{\color{red}#1}} % supervisor comment
%\renewcommand{\com}[1]{} %remove starting % to remove supervisor comments
% This will appear in text \com{Lecuters comment} and be visible unless you uncomment
% the renewcommand line.

\newcommand{\todo}[1]{{\color{green}#1}} % items to do
%\renewcommand{\todo}[1]{} %remove starting % to remove items to do

\newcommand{\n}[1]{{\color{blue}#1}} % other comment
%\renewcommand{\n}[1]{} %remove starting % to remove notes

\newcommand{\dn}[1]{} % add the d to a note to say that you have finished with it.


% Set to true ONLY if using Harvard citation style
\newboolean{HarvardCitations}
\setboolean{HarvardCitations}{false} % false for computer science, true for interaction design and harvard style


\ifthenelse{\boolean{HarvardCitations}}{%
	\usepackage{natbib} % for Harvard names as citations.
}{%
	\usepackage[numbers]{natbib} % for Vancover numbers in bibliography
}

\newcommand{\q}[1]{\leavevmode\marginpar{\small\em #1}}
\renewcommand{\q}[1]{}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage{pdfpages}
\usepackage{amsmath}
\usepackage{mathtools}
\usepackage{algorithm,algpseudocode}
\usepackage{amsthm}
\usepackage{tabularx}
\usepackage{caption}
\usepackage{subcaption}
\usepackage{tikz}
\usetikzlibrary{arrows.meta}
\usepackage{embedfile}
\embedfile{bolkar.tex}
\embedfile{bolkar_inc/abstract.tex}
\embedfile{bolkar_inc/acknowledgments.tex}
\embedfile{bolkar_inc/background.tex}
\embedfile{bolkar_inc/conclusion.tex}
\embedfile{bolkar_inc/DaimData.tex}
\embedfile{bolkar_inc/discussion.tex}
\embedfile{bolkar_inc/implementation.tex}
\embedfile{bolkar_inc/introduction.tex}
\embedfile{bolkar_inc/mastersIntro.tex}
\embedfile{bolkar_inc/method.tex}
\embedfile{bolkar_inc/preface.tex}
\embedfile{bolkar_inc/protocol.tex}
\usepackage{multirow}
\usepackage{amssymb}
%\usepackage{physics}
\usepackage{pdfpages}



\DeclarePairedDelimiterX{\norm}[1]{\lVert}{\rVert}{#1}
\let\vec\mathbf

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{document}
%\includepdf[pages=-]{bolkar_figures/cosi_face.pdf}

\input{bolkar_inc/DaimData} % this is the file which contains all the details about your thesis
\makefrontpages % make the frontpages
\input{bolkar_inc/mastersIntro}

\include{bolkar_inc/abstract}
\include{bolkar_inc/acknowledgments}

\tableofcontents

\hypersetup{pageanchor=true}

% Comment with a percent to remove figures or tables:
\listoffigures
\listoftables
%\lstlistoflistings

\includepdf[scale=1.1, offset= 0cm 0cm]{bolkar_figures/0}

\include{bolkar_inc/introduction} % includes latex files from the same directory
\include{bolkar_inc/background}
\include{bolkar_inc/method}
\include{bolkar_inc/discussion}
\include{bolkar_inc/conclusion}

%\include{bolkar_inc/packages} % could be called Methodology or methods or any filename 
%\include{bolkar_inc/structure} % could be results
%\include{bolkar_inc/implementation}

\ifthenelse{\boolean{HarvardCitations}}{%
	\bibliographystyle{agsm} % used for Harvard style references. Names - Humanities & Interaction Design
}{%
	\bibliographystyle{ntnuthesis/ntnuthesis} %used for Vancover style references. Numbers - Computer Science & Physics
}

\bibliography{bolkar}

\appendix
\include{bolkar_inc/protocol}
%\include{inc/timetable}

\end{document}





\chapter*{Abstract}

Fluorescent labeling of neurons by neurotropic viruses has become an important tool used in neuroscientific research for tracing synaptic connections and analyzing neuroanatomy. After the advent of combinatorial spectral expression by means of viral vectors, the technique now allows simultaneous discrimination of neurons in great quantities. However, manual analysis of viral labeled neurons is time-consuming and poses many challenges for scientists. Designing an automatic and robust processing algorithm has been found elusive especially for neural morphology studies because of complex and stochastic appearance of thin dendritic structures. As the analysis of neural morphology requires extraction of full neural arborization (i.e., branching), monochromatic viral labeling only allows processing of sparse regions that do not contain overlapping neurons, thereby motivating the development of spectral labeling for sparsification of neuron populations.

Unlike previous studies favoring hard segmentation, we propose a fully unsupervised pixel-level soft segmentation algorithm to separate spectral labeled neurites and to enable morphological analysis of overlapping neurons. Firstly, to eliminate biological noise and enhance dendrites, we cast prepossessing step as piecewise-image recovery task, and propose a fast image flattening algorithm based on a weighted $\ell_1$-norm total variation where close data points are leveled out and high gradients are preserved. We efficiently minimize the energy function by a modular taut-string based proximal algorithm. To further augment preprocessing, background subtraction and linear contrast enhancement are employed. Inspired by color and object manipulation methods employed in computer graphics, we invert weighted Porter-Duff compositing model by ridge and $\ell_2$-norm total variation regularized optimization and extract opacity values corresponding each pixel for each of the expressed fluorescent labels (i.e., pseudo-colors) as soft segments. Finally, we show the effectiveness of our algorithm by qualitative analysis applied to confocal image stack obtained from mice retina and by quantitative measures using synthetically generated images with the corresponding ground truth.

Our algorithm design aims classification of retinal ganglion cells, and it is specifically designed to relax the hard boundaries and to keep dendrites intact as their arborization carry the information for identification of these cells. To reconstruct full branching of neurons in 3d, we propose a post-processing algorithm based on nonlinear morphological operations and convert soft segments to binary masks. This masking step ensures preservation of details and removes non-neural components. The code of the full pipeline is publicly available at github.com/elras/SoftsegmentNeurons. 
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\chapter{Background}
\label{chap:background}

Image segmentation is one of the core research topics heavily studied in computer vision. The current state of the art in supervised image segmentation (e.g., semantic, instance or panoptic segmentation) is dominated by deep neural networks \cite{liu2018path, chen2018encoder, he2017mask, bansal2016pixelnet}. On the other hand, in unsupervised segmentation; hierarchical \cite{syu2017hierarchical, liu2016image}, graph \cite{levinkov2017joint, gao2016graph, cheung2018graph, wang2015global}, clustering \cite{tang2015secrets, marin2017kernel} and optimization \cite{fang2018piecewise, hell2015approach} based methods are also proposed in addition to popular deep neural network based approaches aiming unsupervised grouping of pixels \cite{kong2017recurrent, xia2017w}. Furthermore, there is a growing interest towards unsupervised low-level processing of images e.g., for contour detection \cite{xie2015holistically, kokkinos2015pushing, maninis2016convolutional, marin2015thin} and intrinsic decomposition \cite{bi20151, fan2018revisiting, lettry2018deep, nestmeyer2017reflectance, zhao2012closed} that targets identification of homogeneous regions of images similar to segmentation. Yet, deep image segmentation still suffers in capturing single-pixel-level details, thereby motivating researchers to employ augmentations such as conditional random fields (CRF) \cite{lafferty2001conditional} employed in Deeplab \cite{chen2018deeplab} (previous leader in PASCAL-VOC segmentation challenge). The inability of convolutional neural networks to adapt pixel-level variations is attributed to their large receptive fields especially present in the final layers. Current research frontier has been pushed to seek alternatives to fully convolutional networks e.g., hypercolumns in \cite{hariharan2015hypercolumns, bansal2016pixelnet} which exploits history of each output pixel from previous layers as features to a classifier (e.g., fully connected net). This has been shown to compensate large receptive field of output layers and increase pixel-level details in segmentation tasks. 

Soft segmentation has also gained attention during the last decade particularly in the graphics and VFX industry. The main motive driving soft segmentation research is the desire for perceptual color and object manipulation directly in photographs and videos \cite{tai2007soft, chang2015palette, tan2017decomposing, lin2017layerbuilder, aksoy2017unmixing, zhang2017palette}. Similarly image matting research, where opacity values belonging to foreground object is estimated, unveiled sophisticated ideas \cite{chuang2001bayesian, xu2017deep}. Although there have been attempts for fully unsupervised image matting (e.g., \cite{levin2008spectral}), the current state-of-the-art still depends on user-input indicating the location of the foreground object (e.g., trimap, seeds). Also, matting algorithms excel in segmenting a single foreground object, and most of the time not suitable for multiple objects. By allowing more than one class for each pixel, in this work we exploit the flexibility of soft pixel-level decomposition when extracting salient dendritic segments. Our method segments all the neurons belonging to a specific class (i.e., a fluorescent label), and allows multiple layers as opposed image matting where only foreground and background separation is succeeded.

Data-eager nature of deep neural networks and lack of available expert annotated datasets has motivated bioimage computing research community to concentrate more on the development of interactive segmentation frameworks such as Ilastik that has been frequently used for segmentation of transmission electron microscopy stacks \cite{sommer2011ilastik}. Although there have been previous attempts for automatic segmentation of fluorescent microscopy images, they are mainly based on hard segmentation which is not suitable for segmenting elongated dendritic structures (i.e., failure of hard segmentation to capture fine dendritic details are shown in the results section) or they aim to segment neuron soma or axons, that are larger comparing dendrites, for cytometry and connectomics purposes. In the following sections, previous studies proposing segmentation of spectral labeled fluorescent image stacks and our algorithmic approach, learning by numerical optimization, will be summarized.


\section{Related Work: Segmentation of Spectral Labeled Neurons}% ******************************
Previous studies on segmentation of spectral labeled neural structures can be divided into three main categories. The focus in all these studies are generally segmentation of neuron soma or axon, and they do not aim morphological analysis of dendrites. These three categories are: Unsupervised segmentation methods designed for segmentation of neuron soma and axons  \cite{bas2010piecewise, bas2012local, shao2012colored, kim2012segmentation, hsu2013brainbow, baglietto2017segmentation, sumbul2016automated, chien2018unsupervised}, interactive segmentation of brainbow stacks (i.e., spectral labelled hippocampus neurons) \cite{roossien2018neuronal} and a recent work on data-driven segmentation of brainbow images using a recurrent neural network \cite{chen2017neuron, yan2018recurrent}. In the results section, because of the lack of available codes and relevancy of algorithms, our results will be compared with the results obtained from \cite{sumbul2016automated}. Here, methods aiming neural tracing in monochrome images are skipped as they constitute the next step in connectome analysis after sparsification of overlapping neurites. 

\subsection{Unsupervised Segmentation}  
In \cite{bas2010piecewise, bas2012local}, Bas et al., propose axon tracing algorithms, first based on piecewise cylindrical model that aims to follow the curvilinear structure of axons starting from a seed point, and a ridge estimation by statistical modelling of the principal curve (i.e., skeleton) \cite{hastie1989principal}. Authors evaluate their methods on synthetically generated axons and a captured brainbow fiber stack with the manually annotated ground truth. Although they present the first processing method for brainbow stacks, their work is limited to tracing of axons and is not generalized to other neural structures. In \cite{kim2012segmentation}, a simple level set based axon segmentation method is presented. In \cite{hsu2013brainbow}, a Bayesian brainbow segmentation algorithm is proposed that can be applied to extract a single whole-body neuron in a sparse setting. In \cite{baglietto2017segmentation}, authors propose a retinal ganglion cell soma segmentation method using active contours and watershed transform. Unlike previous papers, Shao et al., realize the importance of soft mating not to sacrifice highly detailed stratification of dendritic trees \cite{shao2012colored}. Authors apply morphological operations to smooth homogeneous regions and choose region growing followed by alpha mating to extract overlapping segmented regions. The method is evaluated on a flybow image stack. It should be noted that seeded image segmentation can be interpreted as graph node labeling that also encompasses graph-cut and random-walking as special cases \cite{sinop2007seeded}. Methods in this set, compute hard region boundaries via energy minimization and may induce spatial discontinuities while segmenting dendrites (see Chapter \ref{chap:discussion}). In \cite{chien2018unsupervised}, Chen et. al., borrow density functional theory from physical modelling and presents illustrative applications for MRI and brainbow ROI segmentation.  


\begin{figure}[tbp]  %t top, b bottom, p page | you can also use h to try to get the figure to appear at the current location
  \centering
  \includegraphics[width=1\textwidth]{bolkar_figures/sumbul.pdf}
  \caption[Overview of the algorithm employed in \cite{sumbul2016automated}]{Overview of the algorithm employed in \cite{sumbul2016automated}: Authors propose an algorithm based on spectral clustering of supervoxels created by watershed-cuts. Clustering is carried out using the mean color of the supervoxels. At the outset, authors denoise input image stack by patch-based BM4D Gaussian denoising. At the last step, segments are recovered according to user input indicating the number of segments.}
  \label{fig:sumbul}
\end{figure}

Unlike previous studies, Sumbul et al., propose segmentation of combinatorially expressed spectral labeled neurons in a real-world setting. Moreover, they show its applicability on brainbow images captured from mice hippocampus and on a synthetic dataset with corresponding ground truth \cite{sumbul2016automated}. Their implementation is publicly available online, which allow us to show the results of the proposed algorithm on our viral labeled retinabow images. The pipeline follows the pattern recognition tradition and consists of several steps applied end-to-end. Firstly authors' denoise image stack by collaborative filtering (i.e., joint transform domain filtering of similar regions found by patch matching). Then, over-segmented version of the stack (i.e., supervoxels) is created by watershed transform; by representing each supervoxel as graph nodes having mean color as the node weight, normalized cuts is carried out to further group supervoxels. To improve segmentation results, authors' split heterogeneous supervoxels and merge if neighbouring voxel color difference is smaller than a predefined threshold. The last step is k-means clustering where a predetermined number of color volumes are quarried from volumes labeled by normalized cuts (Figure \ref{fig:sumbul}).

\subsection{Interactive Segmentation}  
In \cite{roossien2018neuronal}, Rossien et al., present nTracer, made available as an ImageJ plug-in, that allows interactive tracing of brainbow spectral images (3-4 channels). The idea is to allow the user to specify end-points of neurites then by using a color similarity based flooding technique, close voxels are merged. Similar interactive tracing has been previously applied for monochromatic images in \cite{longair2011simple}.  

\subsection{Supervised Segmentation by Deep Learning}  
Two recent works employ a data-driven approach and exploit annotated image sets to train deep neural networks for segmentation of spectral labeled neuron image stacks. In \cite{chen2017neuron}, a fully convolutional network is trained for segmentation of neuron soma only. Yan et al., \cite{yan2018recurrent} on the other hand, trains a recurrent network to attempt segmenting full brainbow branching. To do that they hand-label a large dataset obtained from mice hippocampus.

\section{Numerical Optimization} % *******************************************************
\label{sec:opt}

In the proposed pipeline, algorithmic components of both preprocessing and soft segmentation is based on mathematical optimization. Therefore, in this section a brief overview of numerical optimization is presented with a special emphasis on the theoretical aspects in addition to the algorithmic details. For classical textbook analysis, Nocedal \& Wright \cite{wright1999numerical}, Boyd \& Vandenberghe \cite{boyd2004convex} and Luenberg et al. \cite{luenberger1984linear} can be referred. Here, we only concentrate on continuous deterministic optimization methods as we perform \textit{relaxation} of variables in our image processing and carry out computations with the assumption that pixel value $p_{i} \in [0 ,1], \ i \in \{1, N\}$ where $N$ is the number of pixels in the image $I$. For detailed overview of discrete and stochastic optimization, \cite{papadimitriou1998combinatorial} and \cite{kall1994stochastic} can be worth consulting. It should be noted that vector notations (i.e., bold letters or arrow indications) are not used in this section. As we work on N-dimensional variables (images), we assume all variables to be vectors in this context.

Mathematical optimization aims to find optimal values $x^*$ for a set of variables, vectorized as $x \in S$ satisfying constraints $C_i$ such that an objective function $f(x)$ is minimum:

%
%\begin{align*}
%\label{eq1}
%        &      &   c^e_i(x) &= 0 \\
% &x^*_i \ = \ min_{x^*_i \in x}\ E(x) \ subject \ to  &  & \\
%        &      &   c^i_i(x) &<=  0 
%\end{align*}
%

\begin{equation}
x^*\ = \ argmin_{x \in S} f(x) \hspace{1em}  \text{subject to} \
  \begin{cases}
     C^e_i(x) = 0\\
     C^i_i(x) \leq 0 
  \end{cases} .
\end{equation}

Here $f(x):\Re^N \rightarrow \Re$ and $C_i^{\{e, i\}}(x):\Re^N \rightarrow \Re$ represents the energy function and constraint functions of vector of variables $x$ chosen from a set $S$. Constraint functions are allowed to be equality or inequality constraints. Working in the discrete domain constitutes solving a NP-hard problem \cite{wright1999numerical}, hence we choose to work in the space of real numbers. For our problem, bounded nature of image pixel values $p_i \in [0, 1]$ creates a box constraint optimization problem (i.e., 8 bit or 16 bit unsigned integer encoded input image is converted to work with values from the real-valued set $S=[0, 1]$). In optimization problems, the objective function can be linear or nonlinear, and for each case methods to obtain a successful optimization result differs. As it will be explained in the methods chapter (Chap. \ref{chap:method}), soft segmentation is posed as a nonlinear programming because of the design of the energy function (i.e., here programming denotes optimization, this term has been widely used since the 1940s \cite{wright1999numerical}). 

Optimization algorithms are iterative and aims finding $\{\Vec{x_i}\}^m_{i=1}$ from the initial guess $\Vec{x_0}$ where it is desired to reach an optimal set of variable values  $\{\Vec{x^*_i}\}^m_{i=1}$ such that $f(x_i^*) < f(x_i)$. There exist no absolute categorization of optimization algorithms in the literature. Also, mostly choice of a method depends on the application at hand. For example, we can classify optimization algorithms according to objective function characteristics (e.g., linear/nonlinear, or zero-order/first-order/second-order according to the availability of gradient and Hessian), according to types of variables considered (e.g., continuous/combinatorial), or according to constraints. In addition to these, there are also cases when the global minimum of an unknown function is calculated (e.g., Bayesian optimization). Energy minimization also formulates the means of learning in graph-based machine learning methods such as Markov random fields (MRF), conditional random fields (CRF) \cite{kappes2013comparative} and neural networks \cite{lecun2006tutorial}.  

Since complete treatment of optimization algorithms is not feasible, in this section some of the mainstream algorithms related to our optimization problem will be briefly presented. We also give an overview of $\ell_1$-norm and total variation ($TV$) regularized optimization that has become very popular because of its sparsity-enforcing capabilities when solving inverse problems. In the preprocessing step, an $\ell_1$ total variation regularized piecewise constant image recovery will be presented. Soft segmentation method, which is inspired by \cite{tan2017decomposing}, applies L-BFGS-B \cite{byrd1995limited}, a version of BFGS (i.e., Broyden–Fletcher–Goldfarb–Shanno) optimization algorithm that allows large-scale minimization of energy functions with simple bounds. BFGS will be presented in the next section as an example of quasi-Newton methods. At this stage, we divide optimization into three main categories for explanation purposes: Optimizing unconstrained smooth functions, constrained smooth and general non-differentiable functions. Although general optimization methods such as proximal algorithms used for non-smooth functions can be also used for smooth functions, very efficient solvers already exist for the latter and they are preferred over the non-smooth solvers.\\

\noindent \textbf{Optimizing Unconstrained Smooth Functions} \\
Minimization of a smooth function $f: \Re^n \rightarrow \Re$ of real variables $x \in \Re^n$ with no constraints is defined as:
\begin{equation}
    \underset{x}{Min} \ \ f(x).
\end{equation}

Since global behaviour of $f(x)$ is unknown generally, optimization aims finding local minimum around a local neighbourhood. But, for the case when $f(x)$ is known to be convex where $f(ax+(1-a)y)\leq af(x) + (1-a)f(y) \ | \ x \in \Re^n \ \text{and} \ y \in \Re^n, \ \forall a \in [0,1]$, one can prove that a local minimum point $\Vec{z}\in \Re^n$ is also a global minimum:  

\begin{proof}
To lead contradiction, suppose $z \in \Re$ is a local minimum but not global, then we should be able to find points $z^*$ for a convex function $f: \Re^n \rightarrow \Re$ such that $f(z^*)<f(z)$. Now, consider close neighbourhood of z such that for some small $\lambda$, $f(\lambda z^*+(1-\lambda)z)<f(z)$ is valid due to convexity. Therefore, $z$ actually cannot be a local minimum.
\end{proof}

Convexity plays an important role in optimization research. For example, convex optimization can be used to bound nonconvex problems arising in global optimization \cite{boyd2004convex} in addition to convexification techniques for approximating nonconvex problems \cite{floudas2009review}. It can be further speculated whether it is necessary to evaluate $f$ for every point $\Vec{x} \in \Re^n$ to find local minima of $f(x)$. Actually, it is possible to exploit gradient vector $\nabla f$ and Hessian matrix $\nabla^2f$ to deduce the direction to which iterator should move. However, computation of gradient or Hessian might be expensive or not feasible due to noisy data. Therefore, sometimes it can be necessary to approximate some of these operators (e.g., quasi-Newton when Hessian approximated) or change the strategy totally by not using any gradient information at all (e.g., zero order optimization).   

As optimization algorithms approach local minima iteratively, direction and step length need to be updated at each iteration. According to the strategies employed to find these two parameters, we can categorize unconstrained optimization methods into two classes: Line search and trust region methods. In this work, we are more interested in line search methods, but trust regions methods have correspondence with line search methods and they require computation of analogues parameters at each iteration. Four main techniques for line search are steepest descent, Newton, conjugate gradient and quasi-Newton methods which also include BFGS algorithm. This categorization is made according to the calculation of search direction where minimization is achieved. Details about these strategies are presented below. For the theoretical derivation of sufficient and necessary conditions for minimizing unconstrained functions, we refer Wright \& Nocedal \cite{wright1999numerical}. 

At this point, It is necessary to state Taylor's theorem as parameters of line search can be derived by using it. Let $f: \Re^n \rightarrow \Re$ be continuous function about a point $x_0$, Taylor's expansion for the function $f$ can be defined by:

\begin{equation}
    f(x)= \sum_n \frac{1}{n!} ((x-x_0) \nabla)^n f(x), 
\end{equation}

when $f(x)$ is a differentiable function, for some $\nu \in \Re^n$ and $t \in (0, 1)$ theorem reduces to:
\begin{equation}
    f(x+\nu)= f(x) + \nabla f(x+t\nu)^T\nu,
\end{equation}

if $f(x)$ twice differentiable, following expression can be derived:
\begin{equation}
\label{eq:2.5}
    f(x+\nu)= f(x) + \nabla f(x)^T\nu + \frac{1}{2}\nu^T \nabla^2f(x+t\nu)\nu .
\end{equation}

Line search algorithms iterates along a direction $p_k$ with a step length $a_k$ on the surface of $f(x)$ to reach local minima satisfying Wolfe conditions (i.e., sufficient decrease and curvature conditions, see \cite{wright1999numerical}):
\begin{equation}
    \underset{a>0}{Min} \ \ f(x_k+ a_k p_k),
\end{equation}

thus it is necessary to find optimum direction and step length parameters. Descent methods utilize steepest descent direction, i.e., direction where decrease in $f$ is highest, $-\nabla f$. We can justify this claim by Taylor's theorem written as:

\begin{equation}
    f(x_k+ a p)= f(x) + a p^T\nabla f_k + \frac{1}{2}a^2 p^T\nabla^2f(x+t p)p.
\end{equation}

Consider neighbourhood of $f(x)$ at $x_k$, by using the theorem we can see the fastest change, $df/da$, for $a\rightarrow 0$ is the solution to the following minimization problem:

\begin{equation}
    \underset{p}{Min} \ \ p^T \nabla f_k \ \ \ \ \ \text{s. t. $\norm{p}=1$}.
\end{equation}
It is straightforward to see that function is minimum when direction $p$ is opposite of the direction $\nabla f_k$. There are many ways to find optimum step length $a$. A common method is called backtracking where iteratively the best $a$ that achieves sufficient minimization is chosen. Though intuitive, steepest descent may not give desired results and can be very slow. Another way of finding descent direction is by Newton's method. Newton direction is derived from second-order expansion of $f$ by Taylor's series, $m_k$ at a point $x_k$ such that $m_k(p) \sim f(x_k + p)$: 

\begin{equation}
    \label{eq:2.9}
    m_k(p)= f_k + p^T\nabla f_k + \frac{1}{2} p^T\nabla^2 f_k p.
\end{equation}

Solving for $\underset{p}{Min} \ \{m_k\}$ by setting $dm_k/dp = 0$, one can show that Newton direction $p^N$ at point $x_k$ is:
\begin{equation}
    p^N = -(\nabla^2 f_k)^{-1}\nabla f_k.
\end{equation}

The advantage of Newton's method is it exploits second order information in addition to the gradient. Yet, it requires inversion of Hessian matrix $\nabla^2f$ which may not be available or computational very expensive. To facilitate second order information, yet also to eliminate the need to calculate exact Hessian, quasi-Newton methods are proposed which estimates $\nabla^2f$ to find search direction.

Quasi-Newton methods aim to approximate Hessian, and let $B_k$ be the approximate following previous iteration, then similar to Newton direction, the quasi-newton direction is written as:

\begin{equation}
    p^N = -B_k^{-1}\nabla f_k.
\end{equation}

To ensure approximation behaves like true Hessian, we require \textit{secant condition} derived from Taylor expansion to hold where $s_k = x_{k} - x_{k-1}$ and $y_k = \nabla_{k}-\nabla_{k-1}$: 

\begin{equation}
    B_{k}s_k = y_k.
\end{equation}

In this part of the section, we briefly focus on BFGS (independently proposed by Broyden, Fletcher, Goldfarb, and Shanno in 1970) quasi-Newton algorithm and its extension L-BFGS (a.k.a limited memory BFGS) \cite{liu1989limited}. They are one of the most popular unconstrained optimization algorithms utilized. At the soft segmentation step, its enhanced version allowing bounded constrained optimization, L-BFGS-B, will be used to find optimum opacity values for soft segments. Update of BFGS ($B_{k}$) and its inverse ($B^{-1}_{k}$) is respectively defined by (for the proof see \cite{broyden1970convergence, fletcher1970new, goldfarb1970family, shanno1970conditioning}):

\begin{equation}
    B_{k} = B_{k-1} + \frac{y_k y_k^T}{y_k^Ts_k} + \frac{B_{k-1}s_k s_k^T B_{k-1}}{s_k^T B_{k-1} s_k},
\end{equation}

\begin{equation}
    B_{k}^{-1} = \bigg(I - \frac{s_k y_k^T}{y_k^Ts_k}\bigg) B_{k-1}^{-1} \bigg(I - \frac{y_k s_k^T}{y_k^T s_k}\bigg) + \frac{s_k s_k^T}{y_k^T s_k}.
\end{equation}

Pseudocode of quasi-Newton BFGS iterations is provided in Algo. \ref{BFGS}. This overall structure is similar to other quasi-Newton line search methods. But as there is still a need to store and process large amount of data, limited-memory versions of these algorithms also appeared that decreases the load in Hessian approximations. L-BFGS is the more efficient version of BFGS where for a chosen $m>0 \ | \ m \in Z$, only $m << n$ components of the vector $s$ and $y$ are stored and rest is deleted (Algo. \ref{LBFGS}). Also, strong Wolfe conditions are set to increase stability \cite{wright1999numerical}. It should be noted that estimating $B_k^{-1}$ at each iteration can be advantageous to skip the computationally expensive matrix inversion step. We also propagate $B_k^{-1}$ instead of $B_k$ during optimization.

\begin{algorithm}
  \caption{BFGS algorithm}
  \label{BFGS}
  \begin{algorithmic}[1]
    %\Procedure{flatten}{$c,\lambda$}\Comment{}
    \Procedure{bfgs}{$ $}
      \State $ B_0^{-1}\gets I$, $k \gets 0$
      \While{$  \norm{\nabla f_k} < \epsilon $} 
        \State $p_k \gets -B_{k}^{-1} \nabla f_{k}$
        \State $x_{k+1} \gets x_{k} + \nabla p_k a_k$
        \State $s_{k} \gets x_{k+1}-x_{k}$
        \State $y_k \gets \nabla f_{k+1}-\nabla f_{k}$
        \State $B_{k+1}^{-1} \gets \text{BFGS update (Eq. 2.14)} $
        \State $k \gets k+1$
      \EndWhile\label{euclidendwhile2}
        \State \textbf{return} $x_{k+1}$
    \EndProcedure
  \end{algorithmic}
\end{algorithm}

Conjugate gradient methods (CG) are an efficient class of minimization algorithms that do not require storage of matrices. In CG, the search direction is defined by following where $\beta$ is a scalar sustaining conjugate relation between $p_k$ and $p_{k-1}$. 

\begin{equation}
    p_k = - \nabla f_k + \beta p_{k-1}.
\end{equation} 

\begin{algorithm}
  \caption{Limited memory BFGS algorithm (m-storage)}
  \label{LBFGS}
  \begin{algorithmic}[1]
    %\Procedure{flatten}{$c,\lambda$}\Comment{}
    \Procedure{l-bfgs}{$ $}
      \State Choose an $m|n>m>0$, $k \gets 0$
      \State Initialize $B^{-1}_0$
      \While{$  \norm{\nabla f_k} < \epsilon $} 
        \State $p_k \gets -B_{k}^{-1} \nabla f_{k}$
        \State $x_{k+1} \gets x_{k} + \nabla p_k a_k$
        \State Delete ${s_{k-m}}$ and ${y_{k-m}}$ if $k>m$
        \State Save $s_{k} \gets x_{k+1}-x_{k}$
        \State Save $y_k \gets \nabla f_{k+1}-\nabla f_{k}$
        %\State $B_{k+1}^{-1} \gets \text{BFGS update (Eq. 2.14)} $
        \State Perform BFGS update
        \State $k \gets k+1$
      \EndWhile\label{euclidendwhile2}
        \State \textbf{return} $x_{k+1}$
    \EndProcedure
  \end{algorithmic}
\end{algorithm}

\noindent \textbf{Optimization with Constraints} \\
Unlike unconstrained optimization, constrained optimization seeks local optima satisfying a set of equality and/or inequality feasibility conditions $c_i(x), \ i\in \{E, I\}$. For problems including only equality constraints, augmented Lagrangian algorithms are known to be the standard way of performing the optimization. However, for the cases with inequality constraints, the problem becomes difficult as it is necessary to check which constraints are active in the constraint set $I$. Accordingly, carrying out programming with an active subset $S \subset I$ is a smart action such that at optimization stage, $S$ can be taken as equality constraints in the Lagrange multiplier setting. This strategy of solving optimization with inequality constraints is generally employed by algorithms called active-set methods. The more efficient way to optimize this type of problems is by applying nonlinear interior-point algorithms where the optimal solution is obtained by first starting from a point that is far from the feasibility border, and then approaching there (border) iteratively until the solution is obtained \cite{wright1999numerical}. L-BFGS-B algorithm exploits the active-set strategy when incorporating box-constraints to the L-BFGS formulation given in Algo. \ref{LBFGS}. \\

\noindent \textbf{Optimizing Non-differentiable Functions} \\ 
Minimizing general non-smooth energy functions is not possible by first or second order gradient-based optimization methods. Considering the nonlinear and large-scale nature of visual computing problems that include non-differentiable terms with $\ell_1$ norm (e.g., $TV-\ell_1$ denoising, basis pursuit) number of research papers for efficient solvers have multiplied in recent years. One class of algorithms, called Proximal methods \cite{parikh2014proximal}, paved the way for fast and robust minimization with non-smooth terms. In fact, many of the recent state of the art optimization algorithms can be proven to be the special cases of proximal methods e.g., ADMM (or equivalently known as Douglas-Rachford) \cite{boyd2011distributed, douglas1956numerical}, split Bregman \cite{goldstein2009split}, Pock-Chambolle \cite{chambolle2011first}, FISTA \cite{beck2009fast}, half-quadratic splitting \cite{geman1995nonlinear}. For further reading, we refer to Wotao Yin's lecture notes on proximal operators and algorithms \cite{WataoYin}.
 
Proximal operator enables minimization of convex closed functions $f: \Re^N \rightarrow \Re \cup \{ +\infty \}$ at the \textit{proximity} of $x$ and is defined as the mapping $\Re^N \rightarrow \Re^N$:
 
\begin{equation}
    prox_{\lambda f}(x) \triangleq argmin_u (f(u) - \frac{1}{2 \lambda}\norm{u-x}^2_2).
\end{equation}
 
As an example, we can derive gradient descent as a special case of proximal update. Consider a function $f(x)$ and its linear Taylor approximation at point x $f_l(x) = f(x) + \nabla^T f(x) (u-x)$. By using proximal operator of $f(x)$ at the vicinity of x, we can write,
 
\begin{equation}
    prox_{\lambda f_l}(x) = argmin_u \bigg( (f_l(x) + \nabla^T f_l(x) (u-x)) - \frac{1}{2 \lambda}\norm{u-x}^2_2 \bigg),
\end{equation}
 
As the first-order optimality condition, taking derivative with respect to $u$  where minimum is achieved and $u=prox_{\lambda f_l}(x)$ results in following expression (see \cite{WataoYin, parikh2014proximal}):
 
\begin{equation}
    \nabla^T f(x)_l + \frac{1}{\lambda}(prox_{\lambda f_l}(x) - x) = 0,
\end{equation}

here local minimization problem ($prox_{\lambda f_l}(x)$) reduces to gradient descent optimization where $\lambda$ indicates the step length:

  \begin{equation}
    prox_{\lambda f_l}(x) = x - \lambda \nabla^Tf_l(x)).
\end{equation}

Similar to above described descent derivation, Hessian approximating quasi-Newton algorithms (e.g., Levenberg-Marquardt method) and closed form proximity operators of $L_p$ norms from  $\ell_{\infty}$ to $\ell_1$ (e.g., soft-thresholding or shrink operator in split-Bregman \cite{goldstein2009split}) can also be derived from proximal methods. \\

%At this step, we could carry out derivation of aforementioned proximal operators for $\norm{.}_1$ and $\norm{.}_2$.
  
\noindent \textbf{Trick of the Trade: $L_1$ Norm Regularization and Total Variation} \\
\iffalse
********************************\\
Mentioned L1 and sparsity, mention why L2 is bad for high dimensional data such as images (second motivation)!

Bayesian interpretation of optimization and L1 regularization (by inferring tv, pdf of image derivative - tv - is concave distributed, best convex norm is L1 in tv optimization)
$http://www.werlberger.org/blog/files/talks/2011-06-30_gpu_summerschool_grenoble.pdf$

*******************************\\
\fi
Before describing ever-growing interest in $\ell_1$ norm based optimization, it is necessary to introduce the concepts of sparse signals and sparse recovery. A sparse signal is a signal with few non-zero elements in a transform domain. This can be explained intuitively considering a natural image where regions with uniform color variation are present. Therefore, by changing representation basis such as by taking wavelet transform, an image can be transformed to a signal with a few non-zero elements which particularly capture salient details (e.g., edges). The simple notion behind sparse signals and recovery of these basis functions that gives sparse representation has far-reaching applications that enable reconstruction with few measurements (i.e., below Nyquist rate). The reason this works very well is the nature of information and the fact that only a portion of the captured/processed signal is sufficient for desired applications. 

Sparse recovery in numerical optimization can be carried out by $\ell_0$ minimization (i.e., minimizing number of nonzero elements). But, this gives a non-convex optimization problem and the solution is known to be NP-hard \cite{natarajan1995sparse}. Instead, consider minimization of convex $\ell_1$ norm in a linear basis pursuit problem which unfolds to:

\begin{equation}
    \underset{x \Re^n}{Min} \ \ \norm{x}_1, \ \ s. t. \ Ax=B, 
\end{equation}

we can relax the above constrained optimization problem by writing it in the form of least-squares and constraints as penalties:

\begin{equation}
    \underset{x \in \Re^n}{Min} \ \ \norm{x}_1 + \lambda \norm{Ax-b}_2.
\end{equation}

Now consider below diagram where $\ell_p$ constrains are visualized for the problem described above. It is striking to realize that $p=1$ results in the only convex relaxation of $\ell_0$ by intersecting orthogonal axis at sparse locations i.e., $x_i = (0, k), \ x \in \Re^2, \ k \in \Re$.   

\begin{figure}[h!]
        \centering
        \resizebox {\columnwidth} {!} {
            \begin{tikzpicture}[>=Stealth]
   \foreach \i in {0,...,3}{
     \begin{scope}[xshift=\i*4.5cm]
      \draw [<->] (-1.2,0)--(2.5,0);
      \draw [<->] (0,-1.2)--(0,1.7);
      \draw[shorten <=-1cm, shorten >=-3mm] (0,1)--(2,0) node [midway, above] {$A$};
    \end{scope}
   }
   \begin{scope}[draw=red, densely dashed]
     \draw [] (-1,0)--(0,1)--(1,0)--(0,-1)--cycle;
     \draw [](4.5,0) circle (0.88cm);
     \draw [xshift=9cm] (-.66,-.66) rectangle (.66,.66);
     \begin{scope}[xshift=13.5cm]
       \draw [domain=0:90,samples=100,smooth,variable=\t] plot({-1*cos(\t)^(3)},{1*sin(\t)^(3)});
       \draw [domain=0:90,samples=100,smooth,variable=\t] plot({-1*cos(\t)^(3)},{-1*sin(\t)^(3)});
       \draw [domain=0:90,samples=100,smooth,variable=\t] plot({1*cos(\t)^(3)},{-1*sin(\t)^(3)});
       \draw [domain=0:90,samples=100,smooth,variable=\t] plot({1*cos(\t)^(3)},{1*sin(\t)^(3)});
     \end{scope}
     \foreach \i [count=\j from 0] in {(0,1),(.39,.79),(.66,.66),(0,1)} \scoped [xshift=\j*4.5cm] { \draw [{Circle[width=3pt, length=3pt, fill=black, black]}-{Circle[width=3pt, length=3pt, fill=black, black]}, shorten <=-1.5pt, shorten >=-1.5pt] (0,0) node [below left] {$x$} -- \i node [above right] {$\hat x$} ; };
   \end{scope}
   \foreach \i [count=\j from 0] in {1,2,\infty,\frac{1}{2}} \scoped [xshift=\j*4.5cm] { \node [anchor=mid west] at (0,-1.5) {$p=\i$}; };
\end{tikzpicture}
        }
        
%\caption[asd]{asd}
\label{fig:6forces}
\end{figure} 

During the last decades, sparsity-inducing capabilities of $\ell_1$ norm is exploited in different fields as: Compressed sensing in imaging \cite{donoho2006compressed}, regularized regression (LASSO with least squares or as LAD-LASSO) \cite{tibshirani1996regression}, Dantzig selector \cite{candes2007dantzig} in statistical analysis and total variation (TV) denoisıng in image processing \cite{rudin1992nonlinear}. At this point, we can also address the high dimensionality of problems consisting of processing of images. Although commonly used by visual computing community, $\norm{.}_2$ based optimization actually do not do good for most of the computer vision tasks. Dimension of the solution space for these problems is so high that (e.g., up to $10^8$) euclidean distance may not simply capture the desired measure between data points. 

Proposed in \cite{rudin1992nonlinear}, total variation (or as ROF, Rudin-Osher-Fatemi, regularization in some sources) is a powerful regularization scheme employed in visual computing. It is defined by $TV(x) \triangleq \norm{\nabla x}$ where in classical formulation norm is chosen to be $\ell_1$. For image processing applications, we can define isotropic ($TV-\ell_2$) and anisotropic ($TV-\ell_1$) total variation formulations by:

\begin{subequations}
\begin{align}
TV_i(x) \triangleq \sqrt{\sum_{i,j} (x_{i+1, j} - x_{i,j})^2 + (x_{i, j+1} - x_{i,j})^2} ,  \\
TV_a(x) \triangleq \sum_{i,j} \norm{x_{i+1, j} - x_{i,j})} + \norm{x_{i, j+1} - x_{i,j})}. 
\end{align}
\end{subequations}

Availability of methods allowing fast gradient computation makes $TV$ regularization attractive for image processing applications that give outstanding results. $TV$ regularization enforce solutions to have sparse gradient components, thus emphasizing salient features such as edges. Most commonly used data fidelity term used in $TV(x)$ optimization is the least-squares term (i.e., $\ell_2$ fidelity) and defined by:

\begin{equation}
    \underset{x}{Min} \ \ \norm{x-y}^2_2 + TV(x)^{\ell_1} .
\end{equation}

Although the current state of the art in several low-level computer vision problems is achieved by $TV-{\ell_1}$ norm based optimization. One can also speculate whether they are of the optimal way of solving inverse problems in visual computing. Total variation restricts solution space to only bounded variation images, yet one might fall a pitfall by claiming that natural images are of bounded variation type. In fact, there are hints showing natural images are not actually bounded variation, and it has been shown that total variation of images rockets to infinity as resolution increases \cite{gousseau2001natural}.


\section{Confocal Fluorescence Microscopy}
\begin{figure}[h]  %t top, b bottom, p page | you can also use h to try to get the figure to appear at the current location
  \centering
  \includegraphics[width=1\textwidth]{bolkar_figures/confocal.pdf}
  \caption[Confocal Fluorescence Microscopy]{Confocal Fluorescence Microscopy: Illustration of out-of-focus light path blocking. It allows much higher resolution comparing widefield microscopy (image source: \cite{muller2006introduction}).}
  \label{fig:confocal}
\end{figure}

Confocal laser scanning microscopy is one the most commonly used imaging techniques in neuroscience. The idea of using a pinhole to block out-of-focus fluorescent light dates back to the 1950's. At that time, this trick has been shown to improve image resolution and allow 3d imaging as the focus-plane could be actually controlled to be able to scan the whole specimen. The main problem was the low amount of light received by the detector. On the other hand, modern confocal microscopes with their embedded laser stimulation and digital preprocessing algorithms made confocal imaging the \textit{de facto} way to capture high-resolution fluorescent signals. In a general confocal imaging setting, laser excitation, focused by a pinhole, is reflected on a specimen using a dichroic mirror. At the point stimulated by the laser, fluorophores emit fluorescence in a longer wavelength than the excitation wavelength. The emitted light passes through the same dichroic mirror and is focused on an image sensor (e.g., CCD, CMOS, sCMOS). The key trick in confocal imaging is the use of pinholes at both excitation to localize laser excitation and at the detected side to eliminate out-of-focus light (Figure \ref{fig:confocal}). In most of the confocal microscopes, band-pass filters are used before the detector in order to block stray light of unintended wavelengths.

During the last decade, microscopy imaging had gone beyond the diffraction limit and reached imaging resolution close to nanometer scale (e.g., <50 nm). Some examples of super-resolution microscopy methods are STED, PALM, STORM and SIM. For instance the pioneering work, stimulated emission depletion (STED) microscopy, exploits two laser excitation to selectively deactivate fluorescent emission, hence it is able to resolve point-sources much closer than previously possible. In this work, we employed Zeiss LSM 710 confocal microscopy, and image acquisition was not performed as a part of the thesis work. Viral injections and scanned image stacks were made available by my collaborators Chen Li and Katja Reinhard. Overview of how spectral viral labeling obtained and imaging carried out is briefly explained in \ref{chap:protocol}.     




\chapter{Conclusion and Future Work}
\label{chap:conclusion}

In this study, we developed a soft segmentation algorithm by estimating weighted Porter-Duff opacity layers for each fluorescent label in order to extract dendritic trees without damaging them. Number of soft segments (i.e., convex polyhedron vertices) are determined by progressive hulls and optimization is performed with a ridge and squared $TV-\ell_2$ regularized L-BFGS-B based least-squares framework. Soft segmentation is augmented by a novel weighted $\ell_1$ total-variation image flattening and a post-processing pipeline designed using nonlinear morphological operators. 

Firstly, a fluorescent image prior is proposed by stating that actual fluorescence emitting objects are distributed on the outer surface of the manifold formed by confocal images. Therefore, fluorescent images are inherently different than reflective-component dominated natural images. Exploiting this prior, expected fluorescent labels are estimated using vertices of convex hull of image data points. In our case, these pseudo-color vertices enable discovery of distinct fluorescent labels even if they are present in a single pixel. 

Four main challenges are realized in viral labeled confocal images. Preprocessing consisting of background subtraction, contrast enhancement and image flattening is put forward to address these issues. Furthermore, image flattening is implemented using a modular proximal algorithm that gives very promising results and decreases computational load up to 50 times comparing state of the art \cite{bi20151}. We also show effectiveness of our image flattening via replacing preprocessing proposed in \cite{sumbul2016automated} by ours and observe 8 to 10 times increase in processing speed as tabulated in Table 4.

Soft segmentation algorithm is quantitatively evaluated using two synthetically generated image stacks with 6 and 8 neurons. Our implementation is also compared with previous 2d and 3d image segmentation techniques. We observe clear increase in segmentation accuracy in all three metrics used. Qualitative inspection of results also show that the soft segmentation is a risk-free way of reconstructing neurons compared to hard segmentation. Processing speed of soft segmentation is increased by initializing segments from results of the previous plane in z-stack. As consecutive frames have similar pixel values, this heuristic encourage fast convergence to local minimum. 

We speculate that the method can be further improved by:
   \begin{itemize}
     \item Formulating the optimization as a least absolute deviations (LAD) problem instead of least-squares. It is known that for high dimensional data, euclidean loss may not give desired outcome (i.e., curse of dimensionality).
     \item Applying sparsity enforcing regularizers in soft segmentation, $TV-\ell_1$ and $\ell_1$, particularly to induce natural inpainting and smoothness. 
     \item Studying global fluorescence priors that can be employed to recover non-local statistics during optimization stage.
     \item Exploiting circular natural of hue to remove spectral salt and pepper noise. We observed that some image stacks have high impulsive noise that cannot be removed by image flattening due to their high gradients. We apply 3d median filter in our post-processing, but this problem can also be resolved by employing a weighted or hue-based circular median filter. 
     \item Using conditional random fields (CRF) as the last step in soft segmentation. In recent years, CRF has been shown to improve pixel-level details in segmentation tasks. Therefore, it would be possible to consult graph-based correction after the main segmentation step.
   \end{itemize}
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\chapter{Results and Discussion}
\label{chap:discussion}

In this chapter, experiments designed to evaluate the proposed method, the outcome of these experiments, and discussion of the results are presented. Three types of experiments are carried out. Firstly, quantitative analysis on two synthetically generated image stacks with the corresponding ground truth is computed, and our method is compared with the state of the art work on brainbow volume segmentation \cite{sumbul2016automated}. Then, we move to qualitative experiments and apply our method to real image datasets in addition to the synthetic stacks. In this section, full reconstruction of neuronal branching from several confocal microscopy stacks hindered by severe noise is presented. Also, several partitioning-based clustering algorithms, k-means, fuzzy c-means and meanshift is compared against ours using a highly overlapping 2d plane (i.e., the maximum projection of a stack is used as the input image). Complementing the analysis of soft segmentation, we also show results of each step in the pipeline to illustrate effects of prepossessing. Before going through the experiments, below we provide mathematical definitions of similarity metrics employed to measure the accuracy of compared algorithms.

\section{Metrics}
Quantitative evaluation is performed using three standard metrics employed in image segmentation: Probabilistic Rand index ($PRI$) \cite{unnikrishnan2005measures}, variation of information ($VI$) \cite{meila2005comparing} and Dice coefficient ($DICE$). Details of the evaluation metrics are given below. \\

\noindent \textbf{Probabilistic Rand Index} \\
Probabilistic Rand index measures consistency between two segmentation. Let $l_i$ and $l_i'$ two set of label assignments from the sets $S$ and $S'$for a pixel $i \in \{1, N\}$, the index can be defined by:

\begin{equation}
    PRI(S, S') \triangleq \frac{1}{{N\choose2}} \sum_{i,j \ | \ i\neq j} \bigg[ I(l_i = l_j) I(l'_i = l'_j) + I(l_i \neq l_j) I(l'_i \neq l'_j) \bigg],
\end{equation}

where $I(.)$ is the identity function \cite{unnikrishnan2005measures}. Higher the PR value is the closer the segmentation to the ground truth. \\

\noindent \textbf{Variation of Information} \\
Variation of information is an information theoretic dissimilarity metric where the smaller value indicates better segmentation. The idea is based on computing conditional entropy of one segmentation given the other one. Let $H(S)$ denote entropy of the label set $S$ with corresponding probability distribution function $P_S$, $VI$ can be defined by \cite{meila2005comparing}: 
\begin{subequations}
\begin{align}
    VI(S, S') \triangleq  H(S|S') + H(S'|S), \\
    H(S|S') \triangleq -\sum_{L} P_{S|S'} log(P_{S|S'}),
\end{align}
\end{subequations}

where $L$ is the set of distinct pixel labels, or equivalently using joint entropy:
\begin{subequations}
\begin{align}
    VI(S, S') \triangleq H(S) + H(S') - 2H(S, S'), \\
    H(S,S') \triangleq  -\sum_{L} P_{S,S'} log(P_{S,S'}),
\end{align}
\end{subequations} 

\noindent \textbf{Sorensen-Dice Coefficient} \\
Sorensen-Dice coefficient, or simply Dice coefficient, is a similarity metric measuring the level of match between computed and provided ground truth labels. It is also known as F1 score in statistical analysis and defined by:

\begin{equation}
    Dice \triangleq \frac{2TP}{2TP + FP + FN},
\end{equation}

where TP, FP and FN is used to denote true-positive, false-positive and false-negative labeling respectively.


\section{Quantitative Experiment Results} % ------------------------

\begin{table}[h!]
  \centering
\small % "\footnotesize" not needed here
%\captionsetup{size=small}
\setlength{\tabcolsep}{2pt} % a bit more whitespace
\begin{tabularx}{0.62\columnwidth}{@{} l *{8}{C}CC@{}}
    \toprule
     Metrics  & \multicolumn{8}{c@{}}{Evaluation for Exp-1 (Our Method)} \\
    \cmidrule(l){3-8}
   & S1 & S2 & S3 &S4 &S5 &S6 & Mean & Std\\
    \midrule
    PRI   & 0.9926  & 0.9910  & 0.9799  & 0.9978 & 0.9960 &  0.9582 &  0.98 & 0.01 \\
    VI   & 0.0355 &0.041 & 0.0819 & 0.0122 &0.0207 & 0.1490 & 0.056 & 0.05  \\
    DICE   & 0.9981 &0.9977 & 0.9529 &0.9949 &0.9995 & 0.9990 & 0.99& 0.01 \\
    \bottomrule
\end{tabularx} 
\vspace{0.5em}
  \centering
\small % "\footnotesize" not needed here
%\captionsetup{size=small}
\setlength{\tabcolsep}{2pt} % a bit more whitespace
\begin{tabularx}{0.62\columnwidth}{@{} l *{8}{C}CC@{}}
   % \toprule
     Metrics  & \multicolumn{8}{c@{}}{Evaluation for Exp-1 (Sumbul et al.)} \\
    \cmidrule(l){3-8}
   & S1 & S2 & S3 &S4 &S5 &S6 & Mean & Std\\
    \midrule
    PRI   & 0.7597 & 0.7726 & 0.7406 &  0.7526 & 0.7471 & 0.7285 &  0.75 & 0.01 \\
    VI   & 0.1968& 0.3971 & 0.4423 & 0.3492 & 0.2573 & 0.7608 & 0.4 & 0.2  \\
    DICE   & 0.3561 & 0.3511 & 0.3682 & 0.3287 & 0.3351 & 0.3511 & 0.34 & 0.01  \\
    \bottomrule
\end{tabularx}
\caption[Evaluation results for 6-neuron segmentation task]{Evaluation results for 6-neuron segmentation task computed using PRI, VI and DICE metrics. Our method is shown to clearly outperform the algorithm presented in \cite{sumbul2016automated}.}
\label{table1}
\end{table} 


\begin{table}[h!]
  \centering
\small % "\footnotesize" not needed here
%\captionsetup{size=small}
\setlength{\tabcolsep}{2pt} % a bit more whitespace
\begin{tabularx}{0.77\columnwidth}{@{} l *{8}{C}CC@{}}
    \toprule
     Metrics  & \multicolumn{10}{c@{}}{Evaluation for Exp-2 (Our Method)} \\
    \cmidrule(l){3-8}
   & S1 & S2 & S3 &S4 &S5 &S6 &S7 &S8 & Mean & Std\\
    \midrule
    PRI   & 0.9855 & 0.9565 & 0.9935 & 0.9995 & 0.9911 & 0.9831 &0.9794 & 0.9999 & 0.98 & 0.01\\
    VI   & 0.0630 & 0.0565 & 0.0342 &0.1256 & 0.0414 & 0.0771 &0.0899 &0.0002 & 0.06 & 0.03  \\
    DICE   & 0.9963 & 0.9970 & 0.9984 & 0.9926 & 0.9978 & 0.9958 & 0.9948&0.9999 & 0.99 & 0.002  \\
    \bottomrule
\end{tabularx}
\vspace{0.5em}
  \centering
\small % "\footnotesize" not needed here
%\captionsetup{size=small}
\setlength{\tabcolsep}{2pt} % a bit more whitespace
\begin{tabularx}{0.77\columnwidth}{@{} l *{8}{C}CC@{}}
   % \toprule
    Metrics   & \multicolumn{10}{c@{}}{Evaluation for Exp-2 (Sumbul et al.)} \\
    \cmidrule(l){3-8}
   & S1 & S2 & S3 &S4 &S5 &S6 &S7 &S8 & Mean & Std\\
    \midrule
    PRI   & 0.7613 & 0.8119 & 0.7328 & 0.7701 & 0.7531 & 0.7598 & 0.7663 & 0.7843 & 0.76 & 0.02\\
    VI   & 0.1969&0.3348 & 0.4100 & 0.2748 & 0.3165 & 0.2902 & 0.3024 & 0.2775 & 0.3 & 0.06 \\
    DICE   &  0.3376&0.3073 &0.3464 & 0.2987 &0.3279 & 0.3705 &0.3287 &0.2906& 0.32 & 0.02  \\
    \bottomrule
\end{tabularx}
\caption[Evaluation results for 8-neuron segmentation task]{Evaluation results for 8-neuron segmentation task computed using PRI, VI and DICE metrics. Similar to the experiment with 6 neurons, our method successfully extracts segments and results are quite close to the ground truth locations.}
\label{table2}
\end{table} 

To evaluate the performance of our method, two synthetic image stacks are generated with 6 and 8 neurons with distinct fluorescent labels. Each has dimensions of 200x1024x1024x3, and is rendered using sRGB color space. Images are created using sparse viral labeled monochrome images that are manually traced from previous confocal stacks. Traced neurons are heuristically colorized (i.e., by using 6 and 8 distinct pseudo-colors) and converted to RGBA where intensity values are randomly assigned for each layer from a range of values. Subsequently, they are merged using Porter-Duff model where fixed opacity value 0.8 is assigned to each segment. To simulate realistic imaging conditions, we also added zero-mean Gaussian noise whose standard deviation value is chosen after visual inspection. Segmentation results can be viewed in Table \ref{table1} for 6-neuron case and in Table \ref{table2} for 8-neuron case. We also visually illustrate maximum projection of results in Figure \ref{fig:quant1} for 6 segments and Figure \ref{fig:quant2} for 8 segments. In these two figures; GT, S and O indicate the maximum projection of ground truth, Sumbul et al.'s \cite{sumbul2016automated} and our segmentation respectively. Columns correspond to recovered neurons with distinct spectral labels. We show that our soft formulation of the segmentation task clearly outperforms the algorithm proposed in \cite{sumbul2016automated} for both 6 and 8 neuron cases. 

\begin{figure}[h!]  %t top, b bottom, p page | you can also use h to try to get the figure to appear at the current location
  \centering
  \includegraphics[width=1\textwidth]{bolkar_figures/quantitative6.pdf}
  \caption[Soft segmentation results for the experiment with 6 neurons]{Soft segmentation results for the experiment with 6 neurons: On the left max-projection of the generated stack, (GT) max projection of ground truth, (O) max projection of results of our method, (S) segmentation results of \cite{sumbul2016automated} for each neuron.}
  \label{fig:quant1}
\end{figure}

\begin{figure}[h!]  %t top, b bottom, p page | you can also use h to try to get the figure to appear at the current location
  \centering
  \includegraphics[width=1\textwidth]{bolkar_figures/quantitative8.pdf}
  \caption[Soft segmentation results for the experiment with 8 neurons]{Soft segmentation results for the experiment with 8 neurons: On the left max-projection of the generate stack, (GT) max projection of ground truth, (O) max projection of results of our method, (S) segmentation results of \cite{sumbul2016automated} for each neuron.}
  \label{fig:quant2}
\end{figure}


\section{Qualitative Experiment Results} % ----------------- ---------------------------------------------

In this part, enhancing effects of background subtraction and image flattening are illustrated on captured viral labelled neuron image stacks. We also apply classical clustering algorithms, k-means, fuzzy c-means and meanshift on the maximum z-projection of synthetically generated image stack with 8 neurons. This creates a quite challenging task with highly occluded segments. Our aim is to show the capabilities of $TV$ and ridge regularization, and illustrate the proposed method actually performs better than traditional clustering algorithms on the formulated 2d image segmentation task. At the end of this section, results for full 3d reconstruction of confocal neural trees labelled with pseudo-green, orange, cyan, magenta and yellow colors are also presented. From these, green, orange and cyan neurons are successfully reconstructed, but results for the remaining neurons are found to be less satisfactory. Binary masks for all these neurons are obtained by the designed post-processing pipeline.

\subsection{Background Subtraction} % -----------------------------------
\begin{figure}[h!]  %t top, b bottom, p page | you can also use h to try to get the figure to appear at the current location
  \centering
  \includegraphics[width=1\textwidth]{bolkar_figures/pre3}
  \caption[Effect of background subtraction on a sample image stack]{Effect of background subtraction on a sample image stack: (A) An image plane from the input stack for the first and last spectral channels, (B) results of sliding paraboloid ImageJ plugin \cite{sternberg1983biomedical}, (C) corresponding channels after BaSIC background subtraction, (D) computed average flat field intensities for x/y plane and baseline signal along z direction.}
  \label{fig:pre1}
\end{figure}

In figure \ref{fig:pre1}, maximum projections of red and blue channels of a stack are shown before (A) and after background subtraction (C) applied. In column (D), the computed mean $x/y$ plane flatfield intensities, and baseline signal along the z-direction are plotted. Since intermediate spectral channel (i.e., green channel) has less deterioration due to noise, it was not even necessary to apply background subtraction. Column (B) shows results after processing of traditional rolling-ball algorithm (implemented in ImageJ) \cite{sternberg1983biomedical}. As can be seen, It is relatively less robust to noise and background removal is not as effective as BaSIC. 

\subsection{Piecewise Constant Image Recovery} % ---------------------------

\begin{figure}[h!]  %t top, b bottom, p page | you can also use h to try to get the figure to appear at the current location
  \centering
  \includegraphics[width=1\textwidth]{bolkar_figures/pre1}
  \caption[Flattening a viral labeled image plane]{Flattening a viral labeled image plane before (A) and after (B) processing. Two example windows are highlighted to show details of flattening.}
  \label{fig:pre2}
\end{figure}

\begin{figure}[h!]  %t top, b bottom, p page | you can also use h to try to get the figure to appear at the current location
  \centering
  \includegraphics[width=0.75\textwidth]{bolkar_figures/pre2}
  \caption[Illustration of flattened profile]{Illustration of flattened profile: (A) a local region clipped from blue channel, (B) resulting piecewise-flat intensity profile for the line indicated by yellow color.}
  \label{fig:pre3}
\end{figure}

\begin{figure}[h!]  %t top, b bottom, p page | you can also use h to try to get the figure to appear at the current location
  \centering
  \includegraphics[width=1\textwidth]{bolkar_figures/pre5}
  \caption[Flattening applied on Berkeley segmentation benchmark.]{Flattening applied on Berkeley segmentation benchmark \cite{MartinFTM01}: Results for three sample images are shown for illustrative purposes.}
  \label{fig:pre4}
\end{figure}

Although background subtraction decreases bio-induced noises such as autofluorescence and unintended staining of glia, it does not offer any solution for non-uniform diffusion of viral vectors into neurons. As explained previously, additional edge-aware flattening is carried out and this task is set as piecewise image recovery by weighted L1-norm total variation optimization. In Figure \ref{fig:pre2}, the effect of our piecewise image flattening is shown on a sample image plane. Figure \ref{fig:pre3} shows plots for the intensity profile along the yellow line for the blue channel of the image plane shown in Figure \ref{fig:pre2}. Lastly in Figure \ref{fig:pre4}, we show results of our flattening on natural images retrieved from Berkeley segmentation benchmark \cite{MartinFTM01}. The preservation of salient details and cartoonization of homogeneous regions is strikingly exposed in these figures.


\subsection{Comparison with Image Clustering Techniques} % 

\begin{figure}[h!]  %t top, b bottom, p page | you can also use h to try to get the figure to appear at the current location
  \centering
  \includegraphics[width=1\textwidth]{bolkar_figures/compare2d.pdf}
  \caption[Qualitative comparison with 2d image segmentation algorithms]{Qualitative comparison with 2d image segmentation algorithms: Results of (A) k-means, (B) fuzzy c-means, (C) meanshift, and (D) our algorithm. Our algorithm is able to separate the highly overlapping imge with 8 labels.}
  \label{fig:compare2d}
\end{figure}

Previously, we compared our algorithm with \cite{sumbul2016automated} using two synthetically generated image stacks containing 200 color image planes. Here we increase the difficulty and compare our method with k-means, fuzzy c-means and meashift using an extrame image, the maximum projection of the image stack with 8 neurons. Therefore, we turn our task into segmentation of a densely overlapping 2d image plane. In Figure \ref{fig:compare2d}, results can be inspected for each algorithm where columns represent distinct neurons: (A) segmentation results for k-means, (B) fuzzy c-means, (C) meanshift and (D) for our method. As clearly shown, only our method is able to segment all distinct pseudo-color labeled neurons.

\subsection{Full Neuron Reconstruction} % 

\begin{figure}[h!]  %t top, b bottom, p page | you can also use h to try to get the figure to appear at the current location
  \centering
  \includegraphics[width=1\textwidth]{bolkar_figures/sparse1.pdf}
  \caption[Obtaining hard segments: An example of green, orange and cyan labeled neurons]{Obtaining hard segments: An example of green (first row), orange (middle row) and cyan (last row) labeled neuron case. Max-projection of the image stack, soft segmentation of neurons, and hard segment after post processing shows successfully 3d Reconstruction performed by our algorithm from noisy input images.}
  \label{fig:sparse1}
\end{figure}
\begin{figure}[h!]  %t top, b bottom, p page | you can also use h to try to get the figure to appear at the current location
  \centering
  \includegraphics[width=1\textwidth]{bolkar_figures/sparse2.pdf}
  \caption[Obtaining hard segments: Challenging case, example of yellow and magenta labeled neurons]{Obtaining hard segments: Challenging case, example of yellow (first row) and magenta (second row) labeled neurons. For magenta case, last 20 planes are excluded not to include other neuron somas. Due to unspecific labeling of these two neurons, results are not satisfactory.}
  \label{fig:sparse2}
\end{figure}

An automatic post-processing algorithm is also carried out to create masks form soft segments. In this section, successful post-processing of three neurons labelled with green, orange and cyan (Figure \ref{fig:sparse1}) are shown. In figure \ref{fig:sparse2}, we also illustrate segmentation of magenta and yellow neurons. Their full branching is not recovered due to the severe deterioration in staining.
%We also show maximum projections after each step for both image stacks in figure \ref{fig:post}.

\subsection{Computation time} % 
Although real-time segmentation and reconstruction are not aimed, improving speed constraints of previous works was a central idea in the project. Therefore, in each step, we avoided heavy computations and employed vectorized algebraic data operations without loops. In the preprocessing step, rather than applying computational expensive non-local collaborative filtering approaches that depend on patch-matching, we employed an efficient proximal algorithm when solving $\ell_1$-norm optimization. In Table 4, the approximate time taken by each step in the pipeline is tabulated and compared with the previous work. We use a real image stack with dimensions 150x960x960x3 when carrying out the test.

\begin{table}[h!]
\label{table:time}
  \centering
\small % "\footnotesize" not needed here
%\captionsetup{size=small}
\setlength{\tabcolsep}{2pt} % a bit more whitespace
\begin{tabularx}{0.35\columnwidth}{@{} l *{2}{C}CC@{}}
    \toprule
     Steps  & \multicolumn{4}{c@{}}{\hspace{-0.3em} Appr. Time (min)} \\
   & O & S1 & S2 \\
    \midrule
    Preprocessing   & 10  & $360$ &  10 \\
    Segmentation   &  $500$ & $2400$ & $200$ \\
    Post-processing   & 2.5 & -  & - \\
    Total  & 512.5 & 2760  & 210 \\

    \bottomrule
\end{tabularx} 
\caption[Comparison of approximate processing times]{Comparison of approximate processing times for (O) our algorithm, (S1) algorithm in \cite{sumbul2016automated} and (S) results of \cite{sumbul2016automated} after replacing the preprocessing by our preprocessing. As a result, our preprocessing increases processing speed of \cite{sumbul2016automated} by more than 10 times without negatively effecting its results.}
\end{table} 

\newpage
\section{Discussion}
Quantitative experiment results for both 6 (Table \ref{table1}) and 8 neuron (Table \ref{table2}) cases show successful segmentation of spectral viral labeled neurons very close to ground truth values. For synthetic dataset, it is not even required to carry our further post-processing, and labels can be obtained by simply thresholding operation. The success of the proposed pipeline can be attributed to its flexibility as soft layers computed by inverting the modified Porter-Duff model preserve available information. On the other hand, pixel-level classification (i.e., hard segmentation) strictly assigns a label to a pixel considering local neighbourhood. As can be seen from Figure \ref{fig:quant1} and \ref{fig:quant2}, \cite{sumbul2016automated} is unable to preserve very thin dendritic trees and at the overall the segmented neurons are partitioned. In terms of computation time, the proposed approach also enables much faster processing comparing state of the art (Table 4). We also observe that when our preprocessing is replaced with the one proposed in \cite{sumbul2016automated}, total processing time decreases an order of magnitude.

As stated at the outset, we face four main challenges in viral labeled confocal image stacks. Densely occluded structure of neurons and their thin dendritic structures are addressed by the design of soft segmentation, yet heavily background noise and inhomogeneous diffusion of viral vectors decrease the quality of results. To enhance the details without distorting dendritic arbors, BaSIC background subtraction \cite{peng2017basic} method is used and a weighted L1 norm total variation flattening algorithm is proposed. In Figure \ref{fig:pre1}, results after BaSIC background correction (column C) show superiority comparing classical rolling-ball algorithm (column B). As can be seen from (D), the algorithm is able to correct non-uniform illumination caused by stitching as well. It can also shift the baseline intensity along the depth dimension for non-biased segmentation of neurons (D). As our algorithm is applied to each 2d image plane, correction of baseline drift along z directly enhances the algorithm accuracy and processing speed greatly. The most surprising is the success of the proposed image flattening algorithm. When applied to confocal stacks (Figure \ref{fig:pre2}) or natural images (\ref{fig:pre4}), it induces sparsity and flattens low-frequency color variations while preserving very subtle details. This can be better observed in Figure \ref{fig:pre3} where the intensity profile of a spectral channel along the yellow line plotted. Here, piecewise constant recovery is clearly visible. 

Since the proposed algorithm is based on convex polyhedron of data points and corresponding segments extracted for each vertex of this polyhedron, the method is able to extract segments that are otherwise ignored by partitioning based algorithms such as k-means, fuzzy c-means and meanshift. In Figure \ref{fig:compare2d}, for example, the neuron at the 3rd column is only segmented by our method but failed to be recognized by others.

In Figure \ref{fig:sparse1}, we apply our algorithm in an end-to-end fashion to two image stacks and reconstruct pseudo-green and pseudo-orange labelled neurons. Column A shows the maximum projection of the image stack, column B is the max projection of soft segmentation result and column C illustrates corresponding x, y and z maximum projection of masks obtained after our post-processing. The results show the successful reconstruction of whole neuron volume which can be directly used for neuron type identification. Figure \ref{fig:sparse2}, on the other hand, illustrates reconstruction of two neurons with nonspecific viral labeling. The resulting segments are not as satisfactory as in the previous figure.



\chapter{Implementation}
\label{chap:implementation}
This has the description of how you actually went about implementing the project.  This should be focused on the interesting challenges and how those related to the project.

There is often the need to layout tables that are long.  We suggest using the sidewaystable mode for this.  You will need to manage the total width of the table to make it fit, but you can see how to do that in the example in Table~\ref{tbl:CBM-MC}.

Writing your own \LaTeX{} tables is very slow, and error prone. There are many converstion tools to help create tables.  The one we used for the sideways table, Table~\ref{tbl:CBM-MC} is LatexKit\footnote{Google plugin for LatexKit \url{https://chrome.google.com/webstore/detail/latexkit/piadpbgaacpbaicjilhfebbfgofomiic}}



% you can also set widths using a new command 
%\newcommand{\Colwidth}{0.08\textwidth}
%\begin{tabular}{l|p{\Colwidth}|p{\Colwidth}|p{\Colwidth}|p{\Colwidth}|p{\Colwidth}|p{\Colwidth}|p{\Colwidth}|p{\Colwidth}|}

\begin{sidewaystable}
\small{
\begin{tabular}{l|cccccccccccccccccc}
Candidate & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & Num & CBM & Diff. \\
\hline
10001 & 0 & -0.5 & 1 & -0.5 & 1 & -0.5 & -0.5 & 2 & 2 & -2 & 2 & 1.5 & -0.5 & 2 & 2 & 8 & 9 & 0.5 \\
10002 & 0 & 2 & 0 & 0 & 0 & 2 & 2 & 2 & 1 & 1 & 1 & 2 & 0 & 2 & 2 & 10 & 17 & 4.5 \\
10003 & 0 & 2 & -0.5 & 0 & 0 & 2 & 1.5 & 1.5 & 2 & -0.5 & 2 & 1 & 0 & 1.5 & 1.5 & 9 & 14 & 3.5 \\
10004 & 2 & -0.5 & 1 & 0 & 0 & 0 & 2 & 2 & 1 & 0 & 0 & 1 & -0.5 & 1 & -0.5 & 7 & 8.5 & 1.5 \\
10005 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 9 & 9 & -1.5 \\
10006 & 2 & -2 & 0 & -0.5 & 1.5 & 1 & 0 & 2 & 2 & 0 & 2 & 2 & -0.5 & 2 & 2 & 9 & 13.5 & 3 \\
10007 & 1 & -2 & 0 & 0 & 1 & 0 & 1.5 & 2 & 2 & -2 & 0 & 1.5 & -2 & 2 & 1 & 8 & 6 & -2.5 \\
10008 & 2 & 2 & -2 & 0 & 2 & 0 & 2 & 2 & 1.5 & 1.5 & 2 & 1.5 & -0.5 & 2 & 2 & 11 & 18 & 3.5 \\
10009 & 2 & -0.5 & 1 & 0 & -0.5 & 2 & -0.5 & 2 & 2 & 0 & 2 & 2 & -0.5 & -0.5 & 2 & 8 & 12.5 & 4 \\
10010 & 2 & -2 & 2 & 0 & -2 & 2 & 2 & 2 & 1.5 & 1.5 & 1.5 & 2 & 0 & 2 & 2 & 11 & 16.5 & 2 \\
10011 & 2 & 2 & 0 & 1 & 2 & 2 & 2 & -0.5 & 2 & 0 & 2 & 2 & -0.5 & 2 & 2 & 11 & 20 & 5.5 \\
10012 & 2 & 1 & 0 & 2 & -2 & 2 & 2 & 2 & 2 & 0 & 1 & 2 & 0 & 2 & 2 & 11 & 18 & 3.5 \\
10013 & 2 & 2 & 1.5 & 0 & 0 & 2 & 2 & 2 & 1 & 0 & 1 & 2 & -0.5 & 2 & 2 & 11 & 19 & 4.5 \\
10014 & 2 & 2 & 1 & -0.5 & -2 & -2 & 1.5 & 2 & 2 & 1.5 & 2 & 2 & 2 & -0.5 & 2 & 11 & 15 & 0.5 \\
10015 & 1.5 & -2 & 1.5 & 1.5 & 2 & 0 & 2 & 2 & 1.5 & 1 & 2 & -0.5 & 1 & 0 & 1.5 & 11 & 15 & 0.5 \\
10016 & 1 & 2 & 0 & 0 & 1.5 & 0 & 0 & 2 & 1 & 0 & 1 & 1.5 & -0.5 & 1 & 2 & 9 & 12.5 & 2 \\
10018 & 2 & 2 & 1 & 0 & -2 & 0 & -2 & 1.5 & 2 & 1 & 0 & 1.5 & 0 & 1 & 2 & 9 & 10 & -0.5 \\
10019 & 2 & 2 & -2 & 0 & 1.5 & 2 & -0.5 & -0.5 & 1.5 & 1 & 2 & 2 & 0 & 1 & 2 & 10 & 14 & 1.5 \\
10020 & 2 & 2 & 0 & 0 & 2 & 2 & 2 & 2 & -0.5 & 1 & 2 & 2 & 2 & 2 & 2 & 12 & 22.5 & 4.5 \\
\end{tabular}
}
\caption[Confidence Based Marking]{Multichoice marking example data with 15 questions, Number correct (Num), the Confidence Based Marking (CBM) grade,  and the differentiation of knowledge quality (Diff)}
\label{tbl:CBM-MC}

\end{sidewaystable}

%\begin{sidewaystable}
%\centering
%  \csvautobooktabular{figures/largeTable.csv}
%\caption[Autogenerated on Sideways page]{using CSV tables to autogenerate the table in a sideways table. This is not an appropriate use of a sideways table as it is small}
%\label{tbl:dataSetsideways}
%\end{sidewaystable}
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\chapter{Introduction}
\label{chap:introduction}

Historically considered as a qualitative technique, advances in computational resources and imaging modalities have made microscopy a powerful quantitative tool for modern biology research. The new research directions such as computational microscopy and bioimage analysis show great promise for many challenges from understanding subcellular mechanisms to large neural networks. Both electron and optical microscopy have become the primary ways to retrieve information. However, unlike electron microscopy, optical microscopy (e.g., widefield, confocal, multiphoton, light-sheet) is able to provide high spatial, spectral and temporal resolution in vivo. Target specific imaging of fluorescence labels enabled by genetic engineering and viral tracing makes optical microscopy even more advantageous and inalienable for many tasks where specificity is of importance. In this project, we particularly focus on the analysis of confocal microscopy images where fluorescent emission is sustained by means of viral tracing. Although this technique creates cell specificity and enables tracing of connected networks by transsynaptic transmission of viral vectors, it is stochastic and inherently generates random spectral labelling of targeted neurons. From image processing point of view, viral labeled neural data poses many challenges that have to be addressed before proceeding to analysis. Furthermore, advances in automatic processing (e.g., denoising, segmentation) has been tampered as biosignatures are generally application-dependent and may not be unveiled by general algorithms. For that reason, segmentation is known to be one of the most challenging tasks in bioimage analysis \cite{meijering2016imagining}.


Identification of neural cell types, understanding their function and deciphering their connectome are of the main goals of neuroscientific research \cite{zeng2017neuronal, sharpee2014toward, swanson2016cajal}. But even for the retina, one of the most studied parts of the nervous system, the number of distinct retinal ganglion cell (RGC) types and their projections to corresponding brain areas remain unclear \cite{masland2012neuronal}. Considering the importance of ganglion cells as they transmit the sole output of visual signals from the retina, determination of their types and function become an important research question in visual neuroscience. To distinguish distinct RGC types; morphological characteristics (i.e., dendritic branching, arborization), electrical response properties and molecular or genetic markers have been employed in the literature \cite{baden2016functional, dhande2015contributions, farrow2011physiological, martersteck2017diverse, roska2001vertical, sanes2015types}. Among these methods, quantitative analysis of neural anatomy (i.e., neural morphology) is particularly attractive as the development of fluorescent expressing viral vectors and sophisticated microscopes make simultaneous capturing of neurons and image-based analysis of their morphology possible \cite{sumbul2014genetic, sumbul2014automated}. Augmented with automatic image processing pipelines, imaging of viral labelled neurons create the opportunity to disclose characteristics of large neural populations \cite{armananzas2015towards}. 
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  \centering
  \includegraphics[width=1\textwidth]{bolkar_figures/1}
  \caption[Spectral viral labeled retinal ganglion cells]{Sample spectral viral labeled retinal ganglion cells (Retinabow). In this four different maximum intensity projection images obtained by confocal laser scanning microscopy, expression and mixing of pseudo-color fluorescent proteins are clearly visible.}
  \label{fig:1}
\end{figure}

Neurotropic viruses have become a standard tool for labeling distinct cell types and unveiling their connectivity sustained by synaptic connections \cite{callaway2008transneuronal}. Specific virus types have natural characteristics that make them ideal neural tracers: They can surpass neuron membrane and interact with cell nucleic acids, they can travel along axons in anterograde or retrograde direction, they can be manipulated to fill the whole cell or to amplify the relevant signal, when necessary eliminating the need for immunochemistry, they allow spectral tracing, and lastly they can cross synapses and tag post-synaptic targets \cite{nassi2015neuroanatomy}. Therefore, when incorporated with fluorescent proteins (e.g., GFP \cite{chalfie1994green}), they become a powerful tool for neural circuit analysis as they enable image-based observation and analysis of neural components \cite{jennings2014tools}. Yet, manual tracing of captured images requires expert labour, besides automatic processing is heavily complicated by naturally overlapping structure of dendritic trees. One way to overcome this challenge is to label neurons with spectral signature expressing fluorescent proteins (i.e., commonly illustrated by pseudo-colors), thereby utilizing spectral information as the cue for automatic separation of dendrites. Spectral neuron labeling has been previously applied for analyzing neural connectome of mouse hippocampus (brainbow) \cite{livet2007transgenic}, drosophila (flybow) \cite{hadjieconomou2011flybow} and zebrafish (zebrabow) \cite{Pan2835}. Combinatorial multicolor fluorescent expression can be obtained via variety of strategies. In our case, three distinct fluorescent proteins; mCherry emitting in the red end of visible spectrum, BFG in the blue end, and GCaMP6 in the green band have been employed (i.e, three-channel spectral imaging). Details for our protocol to obtain multi-color expression in retina (retinabow) is explained in the Appendix \ref{chap:protocol}. Briefly, the method is based on injection of three different retrograde viral vectors to wide-field neurons in the mouse superior calculus. As wide-field neurons take input from retinal ganglion cells, by allowing viruses to transverse for a certain amount of time (approximately 21 days), retinal ganglion cells can be contaminated by combinatorial mixture of these three viral vectors (Figure \ref{fig:1}). 

Our goal differs from these works as we desire to analyze neuron morphology instead of connectomics. To do so, we create fluorescent expression by using three different viral vectors and then sparsify juxtaposed RGC neurites. This thesis focuses on image processing aspects and aims to further contribute image-based cell type identification by developing an unsupervised algorithm to extract soft segments from confocal microscope image stacks that are stained by distinct spectral signatures.  

\section{Problem Statement}
The established way of classifying neural cells is done by clustering of features obtained from the distribution of neuron's dendritic tree. This clustering is further supported by additional genetic or molecular markers, therefore giving the opportunity to identify unknown cell types \cite{sumbul2014genetic}. However, the main problem with this approach is that it can only be applied when neurons are isolated, in other words, their dendrites show minimum overlap with neighbouring neurons' arborization (Figure \ref{fig:2}). This problem restricts the applicability of the approach for most of the neurons, especially in the retina, as retinal ganglion cells are distributed densely to enable even sampling across the visual field. 
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  \centering
  \includegraphics[width=0.85\textwidth]{bolkar_figures/2}
  \caption[Dense vs sparse viral monochrome labeling]{Dense vs sparse viral monochrome labeling: (A) Labeling of densely distributed neurons, (B) labeling of an isolated neuron.}
  \label{fig:2}
\end{figure}

By discovering different fluorescent proteins that emit light in non-overlapping spectral bands, one may exploit traditional viral tracing and genetical tools to multiplex different fluorescent labeling for densely situated neurons. Therefore, the specification can be obtained by segmentation of neurons homogeneously labeled by fluorescence mixture. 

Existing literature uses both terms, multicolor and spectral labeling, interchangeably when referring the technique. However in this project, we are interested in the unsupervised fuzzy classification of pixels (e.g., soft clustering, segmentation) according to distinct fluorescence labels, and perceptual attributes are not of interest. Therefore, we prefer using the term "fluorescent label" or "spectral label" instead of "multicolor" when discussing the analysis of these images. In this work, pixels are merely tensors that can be represented in any orthogonal coordinate space. Following previous works, our pseudocolor spectral images are illustrated in sRGB color space. These images contain 4 spectral channels where the 4th channel is used for reference purposes to label starburst amacrine cells by ChAT antibodies, and other three channel is used to label and segment retinal ganglion cells. 

As stated previously, spectral labeling is stochastic; in other words, spectral mixing cannot be directly controlled and (if happens) it is random. As a work-in-progress protocol, it also exhibits severe challenges further complicating analysis of captured images. As illustrated in Figure \ref{fig:3}, the main challenges that must be addressed during the design step are: Heavily overlapping nature of dendrites, viral diffusion inhomogeneity, very thin appearance of dendrites, and background biological noise. 
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  \centering
  \includegraphics[width=1\textwidth]{bolkar_figures/3}
  \caption[Challenges in processing retinabow]{Challenges in processing retinabow. (A) Inhomogenous labelling (both cyan and green hue can be observed), (B) overlapping nature of dendrites, (C) very thin appearance of dendrites (an example of 1 pixel-wide branch), (D) biological background noise (unintended staining of background tissues).}
  \label{fig:3}
\end{figure}

\section{Research Proposal and Contributions}
Dendritic trees contain features used to identify the cell types, hence an algorithm aiming segmentation of neurons should be carefully designed not to spoil any relevant information. However, dendrites are much harder to segment comparing neuron soma and they are more vulnerable to color variations especially caused by background noise (i.e., because of their thin structure). Deterioration caused by the imaging system may adversely affect dendrites more than soma. To solve this problem, it is necessary to implement a deconvolution step during preprocessing. On the other hand, deconvolution is actually not desired as we aim to improve label homogeneity in neurons and deconvolution might unmix observed spectral mixing i.e., by applying deconvolution, diffusion homogeneity of a purple labeled neuron with visible blue and red parts might be reduced. This trade-off makes this segmentation task even more challenging one.
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  \centering
  \includegraphics[width=1\textwidth]{bolkar_figures/porterduff.pdf}
  \caption[Porter-Duff over-compositing model]{Porter-Duff over-compositing model: Our algorithm accepts user input for number of expected fluorescent labels and automatically computes data convex hull vertices (i.e., color palette). Then it recovers RGBA segments for each label such that when composited by weighted Porter-Duff forward model, the input image is synthesized. This enables us to use weighted Porter-Duff model in a least-squares optimization framework where alpha segments are estimated using a priori regularizers.}
  \label{fig:porterduff}
\end{figure}

To address this challenges, in this work we propose to develop a soft segmentation algorithm that is flexible enough to extract very thin homogeneously labeled neurons. We set the preprocessing as a piecewise image recovery task that is able to balance the trade-off between desired color mixing and extraction of thin structures. For this purpose, we exploit weighted $\ell_1$-norm total variation edge-aware flattening where the balance is achieved through weighting of the $TV-{\ell_1}$ regularization term. Prior to flattening, the images are enhanced by BaSIC background subtraction \cite{peng2017basic} and linear contrast stretching. Soft segmentation step is carried out by inverting weighted Porter-Duff forward model \cite{porter1984compositing}. Here, the idea is inspired by color manipulation algorithm proposed by Tan et al. \cite{tan2017decomposing} where Porter-Duff model is used as the forward model. Inversion is carried by numerical optimization where regularization is designed to achieve optimum soft segments with minimum overlap. As sketched in Figure \ref{fig:porterduff}, the algorithm results in alpha layers (i.e pixelwise opacity values) for each of the observed pseudo-color. The proposed method requires no supervision except an user-input indicating number of expected fluorescent expressions (i.e., number of soft segments). Fluorescent images have different statistics than natural reflective images, and we see that previously applied priors and heuristics do not hold for them. For example, representative-based methods to find the dominant color (e.g., k-means, fuzzy c-means Gaussian mixture models) are shown to fail as fluorescent image pixels values are actually distributed on the outer surface of the manifold. In this work, we compute convex polyhedron (i.e., hull) encompassing all colors and find distinct vertices matching user input \cite{tan2017decomposing}. This enables automatic discovery of spectral labels even if it only exists in just a single pixel. 

We can list the contributions of this work as:
   \begin{itemize}
     \item Our work differs from previous studies in neuron segmentation as they opt for segmenting neurons by using hard boundaries (i.e., only one class attributed to each pixel). To the best of our knowledge, our work also illustrates the first example of soft segmentation applied on 3d multi-channel image stacks.
     \item We propose the proximal image flattening algorithm that is able to recover piecewise constant version of the input image by using weighted taut-string optimization \cite{barberoTV14}. The proposed method reaches an operation speed of couple of seconds, and improves the state of the art \cite{bi20151} that operates in a few minutes. 
     \item We modify the standard Porter-Duff equation \cite{porter1984compositing, tan2017decomposing} and propose to invert weighted model where higher inter-class separation is achieved.
     \item The developed unsupervised post-processing pipeline, which is based on nonlinear morphological operators, results in equivalent performance and speed comparing the state of the art without depending on a trained deep neural network (e.g., \cite{sumbul2014automated}).
     \item Our overall pipeline achieves much better segmentation results than the previous study \cite{sumbul2016automated} on viral labeled neuron image stacks.
   \end{itemize}

\section{Outline of The Thesis}
The remainder of the paper is organized as follows: In Chapter \ref{chap:background}, we give a detailed overview of previous spectral labeled neuron segmentation methods and numerical optimization which is exploited during development of the algorithms. The proposed pipeline including preprocessing, soft-segmentation and post-processing, that is used to obtain binary masks of neurons, explained in Chapter \ref{chap:method}. Chapter \ref{chap:discussion} gives results and discussion of qualitative analysis applied to real retinabow data and quantitative analysis evaluated on synthetically generated image stacks. Conclusions are drawn in Chapter \ref{chap:conclusion} with proposition of possible future research directions.
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\section{Mathematical Notation}

\medskip
\begin{table}[h!]
\begin{tabular}{l|l}

\multirow{2}{*}{} $\Re^n$ & n dimensional space of real numbers   \\  
                      \rule{0pt}{3ex} $Z^n$  &  n dimensional space of integer numbers                   \\ 
                    \rule{0pt}{3ex}  $I^T $  & transpose of matrix $I$              \\ 
                      \rule{0pt}{3ex}    
 $\nabla f \triangleq \big( \frac{\partial f}{\partial x_1}, .. \  \frac{\partial f}{\partial x_n} \big)$  & the gradient operator on $f: \Re^n \rightarrow \Re^n $                   \\ 
                      
                     \rule{0pt}{6ex} $\nabla \Vec{f} \triangleq \begin{pmatrix} 
\frac{\partial f_1}{\partial x_1}& ..  & \frac{\partial f_1}{\partial x_n} \\ 
 .. & \frac{\partial f_2}{\partial x_2} & .. \\ 
 \frac{\partial f_m}{\partial x_1}& .. & ..  
\end{pmatrix} $  & the Jacobian matrix on $f_i \in \Re^n \ | \ i \in \{ 1, m\} $                   \\ 

                     \rule{0pt}{3ex} $\norm{x}_p \triangleq \big( \sum x^p_i \big)^{\frac{1}{p}}$  & $L_p$ norm defined on $x: \Re^n \rightarrow \Re $                  \\ 
                    \rule{0pt}{3ex} $\norm{x}_{\infty} \triangleq \underset{i \in {1, n}}{Max} \ \norm{x_i}_1$  & $L_{\infty}$ norm on $x: \Re^n \rightarrow \Re $                  \\ 
                    \rule{0pt}{3ex} $\norm{x}_0$  & $L_0$ norm to count number of nonzero elements in $x \in \Re^n$                  \\ 

                     \rule{0pt}{3ex}  $\nabla^2 f \triangleq \begin{pmatrix} 
\frac{\partial^2 f}{\partial x_1^2}& ..  & \frac{\partial^2 f}{\partial x_1 x_n} \\ 
 .. & \frac{\partial^2 f}{\partial x_2^2} & .. \\ 
 \frac{\partial^2 f}{\partial x_n x_1}& .. & ..  
\end{pmatrix} $  & the Hessian matrix on $f \in \Re^n $                   \\ 

                    \rule{0pt}{3ex}  $prox(x)_{\lambda, f} \triangleq argmin_u (f(u) - \frac{1}{2 \lambda}\norm{u-x}^2_2). $  & proximal operator of $f(x)$              \\ 
                    
                    \rule{0pt}{3ex}  $TV^{\ell_p}(f) \triangleq \norm{\nabla f}_p$  & total variation regularization using $L_p$ norm ($TV-\ell_p$)            \\ 
                    

\end{tabular}
\end{table} 

\iffalse
\noindent \textbf{Spectral fluorescent labelling}: Described as multicolor fluorescent labelling of neurons in previous studies. Since spectral bands of confocal laser scanning microscopy do not correspond perceptual color channels, the term "spectral" is used instead of "multicolor" to denote the same concept. In our case, fluorescent expression is created by viral vectors, viral labelling term is also equivalently used. \\
\textbf{Fluorescent labels}: It refers to distinct pseudocolors homogeneously diffused to neurons. In our model, we represent each label by a vertex in convex hull encompassing all data points, and we aim to find soft segments for each of these labels.\\
\textbf{Soft segments}: The term represents alpha layers computed for each vertex (i.e., for each fluorescent label) by optimization.\\
\textbf{Diffusion homogeneity (i.e., label homogeneity)}: Describes the level of distribution of distinct fluorescent labels created by mixture of three injected viral vectors. \\
\textbf{Retinabow}: It refers to spectral fluorescent labeling of retinal ganglion cells mediated by viral vectors that we aim to segment in this work.\\
\textbf{Brain, fly or zebra -bow}: Class of methods mediated by Cre recombinase- recombination describing spectral transgenic labelling of mouse hippocampus, drosophila brain and zebrafish embryo nervous system. \\
\fi
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\chapter{Proposed Method}
\label{chap:method}

The overlapping position of dendrites, when combined with high biological noise, imposes a challenging segmentation task. Although the soft segmentation idea is put forward to optimize extraction of thin structures, preprocessing should be properly designed to balance the trade-off between two of our aims; increasing viral labeling homogeneity (e.g., by means of convolution) and preserving salient structures (e.g., edges). Also, soft segmentation should be designed to add extra robustness to the pipeline so that whole neuron labeled with a single pseudo-color can be segmented without dividing the neuron itself. In this section, our proposed processing pipeline to address these problems is presented. An overview of the pipeline is illustrated in Figure \ref{fig:algo}. In the below sections, algorithms constituting preprocessing,  soft segmentation and post-processing where soft segments are converted to binary layers will be explained in detail.
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  \centering
  \includegraphics[width=1\textwidth]{bolkar_figures/algo}
  \caption[Schematic illustrating proposed method]{Schematic illustrating proposed method. Preprocessing and soft segmentation are carefully designed to preserve information present in tiny and complex dendritic trees}
  \label{fig:algo}
\end{figure}

\noindent \section{Preprocessing}
Preprocessing consists of three main steps, and each one is designed to decrease the severity of deterioration observed in fluorescent signal captured by confocal microscopy (Figure \ref{fig:3}). As the first step background subtraction is carried out to eliminate undesired biological staining (image D in Figure \ref{fig:3}), contrast enhancement is applied to emphasize fluorescent signal of neural components comparing the relatively darker background, and image is sparsified by transforming image into its piecewise constant version to increase homogeneity in the regions belonging to neuron. This is obtained by minimizing a handcrafted energy function that preserves dendritic trees while flattening it. In addition to the three-step preprocessing, it is advised to apply 3d median filtering if the image acquired has high-level impulse noise (e.g., salt \& pepper noise). This denoising step will be further discussed in post-processing.\\

\subsection{Background Subtraction} 
Background fluorescent is a common problem in fluorescent confocal imaging. Nonspecific sample staining and autofluorescence are two of the main reasons causing background fluorescent noise \cite{wu2010microscope}, and severity of this noise can halt quantitative bioimage analysis and may give inaccurate segmentation results. Spectral viral tracing is an ongoing project and the protocol to optimize neuron-specific fluorescent staining has not been fully established yet. Therefore, it is necessary to augment the soft segmentation idea with a proper removal of undesired fluorescent components. In our pipeline, we utilized ImageJ plug-in of BaSIC background subtraction framework proposed by Peng et al., \cite{peng2017basic} as it offers an efficient way to remove undesired components. The algorithm is augmented with flatfield, darkfield and baseline correction (i.e., average intensity variation along depth). The algorithm sets the objective of fluorescent signal extraction from noisy multichannel measurements as an $\ell_1$-norm based optimization problem, and carries out the solution by linearized augmented Lagrangian method for low-rank representations \cite{lin2011linearized}. Below, the idea behind BaSIC will be briefly explained.

In the original work, authors sort the input image intensity values in ascending order and uses this vectorized version instead. Their key (also dangerous) assumption is that for a large image stack, distribution of foreground fluorescent objects can be assumed to be independent of pixel location. Since we target segmenting densely labeled stacks, the assumption has minimum adverse effects on our processing pipeline. Then, authors model measured intensity values of a sorted image stack $I \in \Re^{m,d}$ at pixel $i$ of the kth plane as follows:
\begin{equation}
    I_{i,k} = B_k  S_{i,k} + R_{i,k},
\end{equation}

where $B_k, \ k \in \{1,d\}$ is the constant baseline signal, $S_{i,k}, \ i \in \{1, m\}, \ k \in \{1, d\} $ denotes flatfield multiplicative shading and $R_{i, k}, \ i \in \{1, m\}, \ k \in \{1, d\}$ is the residual. The model is further augmented by inclusion of additive dark field component that models dark noise at pixel $i$:
\begin{equation}
    I_{i,k} = B_k  S_{i,k} + D_{i} + R_{i,k},
\end{equation}

with this model, the task of background subtraction reduces estimation of $B, S$ and $D$ unknowns. Note that splitting $D_i$ into two could be useful here to combine  multiplicative scalar ($D^z$) and additive ($D^r$) residual components together to form a compact solution:
\begin{equation}
    I_{i,k} = (B_k + D_i^z) S_{i,k} + D^z_{i}(1-S_{i, k}) + D_i^r+ R_{i,k},
\end{equation}

the sum $(B_k + D_i^z)$ is low-rank, and the problem requires an efficient solver (i.e., solving a low-rank representation is known to be computationally costly). In this problem, authors opt for an augmented Lagrangian based solver \cite{lin2011linearized}. In the solution, they elucidate sparse structure of images at transform domain and pose the estimation as an $\ell_1$-norm regularized constrained optimization problem of the form:
\begin{equation}
    \underset{B, S, D}{Min} \ \norm{R^w}_1 + \lambda_s \norm{F(S)}_1 + \lambda_d \norm{F(D^r)}_1 +  \lambda_d \norm{D^r}_1, 
\end{equation}
\begin{equation*}
   \text{subject to} \ \  I_{i,k} = B_k  S_{i,k} + D_{i} + R_{i,k},
\end{equation*}

where $F(.)$ denotes the Fourier transform and $R^w$ is the element-wise weighted version of $R$, the weighting done iteratively by setting initial weight to zero and using estimated parameter values at the previous iteration as:
\begin{equation}
    R^w_{i, k} \leftarrow \frac{R_{i, k}}{\sqrt{\sum_j (R_{i, k} / B_{i,k})^2} + \epsilon}.
\end{equation}

The parameter $\epsilon > 0$ has been placed to increase robustness of the solution. The developed algorithm further splits the optimization function into two to decrease computational time. For the details of implementation aspects, we refer supplementary document provided by \cite{peng2017basic}. Using the package, we further drop darkfield ($D$) computation and estimate only baseline drift $B$ and shading components $S$. This choice results in faster computation without losing denoising quality. Also, we have observed that the effect of darkfield quite negligible in our viral labeled images.

\subsection{Contrast Enhancement} 
Spoiled by background fluorescent, neuron-specific fluorescent signals appear with low contrast than what is expected in a clean confocal image. Although background subtraction achieves an improvement in signal-to-noise ratio, a contrast enhancement step is also applied in our preprocessing pipeline. Here, we take a heuristic approach and apply linear contrast stretching. We allow some level of saturation in both dark and light pixels, thus amplifying the fluorescent emitted from neural structures. For a pixel $x_i, \ i \in \{1, N\}$ in an image $I$ where $N$ is the number of pixels, $\{p_u, p_l\}$ being the upper and lower percentile of which saturation allowed and $n$ is the bit depth, the contrast stretched pixel value $x_i^*$ is obtained by:   
\begin{equation}
    x_i^* = (x_i-p_l) \ \frac{2^n}{p_u-p_l}.
\end{equation}

Allowing a certain level of saturation and using percentile rather than maximum and minimum intensity values is an important factor for making the algorithm robust to outliers. Although the order of contrast enhancement is not important, it is observed that applying it before and after background subtraction in an iterative way may improve fluorescent signal quality for some images. That is the main reason why preliminary contrast enhancement is left as an optional step. In our pipeline, we choose lower and upper percentile as 2\% and 98\% respectively.

\subsection{Obtaining Piecewise Constant Image} 

Edge-aware image operations are of the hot topics in low-level computer vision research due to its applicability to wide range of problems from image manipulation (i.e., by means of albedo recovery) to image analysis (e.g., segmentation of desired homogeneous regions) \cite{perona1990scale, tomasi1998bilateral, xu2011image, strekalovskiy2014real}. Natural images have sparse characteristics in a transform domain, and they generally contain set of regions with uniform color and shading variations. However, they also include textural details that play an important role in identification of their unique characteristics. For our problem, we desire to increase pseudo-color homogeneity (i.e., viral diffusion homogeneity) in labeled neurons so that information loss by partitioning of neurons can be avoided. Yet, we also desire to preserve thin dendritic structures and discourage any blurring operation. This poses a challenging task as filtering based approaches, though operate fast, are experimented to be not sensitive enough for such problems as they further blur the input image. Therefore, we take an alternative approach and develop an efficient image flattening algorithm by proximal optimization. We exploit inherent sparsity by means of weighted $\ell_1$-norm total variation regularization where pixel-wise weights are designed to plummet intensity variation of homogeneous regions, yet amplify pseudo-color changes (e.g., dendrites). Our proximal image flattening algorithm exploits the strength of non-smooth convex optimization to reach blazing processing speed (i.e., up to sub-second processing speed for a single plane). 

We formulate our problem of recovering piecewise flat image $I^f \in \Re^{nxm}$ as minimization of a weighted anisotropic TV function from an input image $I^{in} \in \Re^{nxm}$:
\begin{equation}
    \underset{I^f}{Min} \Bigg( \sum^n_i \sum^m_j \  w_{i,j}\norm{I^f_{i,j} - I^{in}_{i-1, j}}_1 + w_{i,j}\norm{I^f_{i,j} - I^{in}_{i, j-1}}_1 \Bigg),
\end{equation} 
\begin{equation*}
    \text{such that} \ A I^f = I^{in},
\end{equation*}

We relax the constrained optimization by turning it to minimization of penalized objective function where optimal solution is sought at the proximity of $I^{in}$:
\begin{equation}
    \underset{I^f}{Min} \Bigg( \sum^n_i \sum^m_j \ \frac{1}{2} \norm{(I^f_{i,j} - I^{in}_{i, j})}^2_2 + w_{i,j}\norm{I^f_{i,j} - I^{in}_{i-1, j}}_1 + w_{i,j}\norm{I^f_{i,j} - I^{in}_{i, j-1}}_1 \Bigg).
\end{equation}

As discussed in the Section \ref{sec:opt}, proximal algorithms offer an efficient solution for optimizing functions with nonsmooth regularization and smooth convex data fidelity term. Here, we opt for 1-d taut-string based \cite{davies2001local} modular optimization algorithm implemented by Barbero and Sra \cite{barberoTV14}. Weighting is the most important factor as it will enable expected flattening of homogeneous regions, but also preserve salient details. Inspired by \cite{bi20151}, we assign exponentially high weights for a pixel whose color difference between neighbouring pixels is low, and low weights if that pixel has high color gradient. This enables over-smoothing of pixels with similar colors to compensate assigned high weighting term and preserves pixels with distinct colors by pushing piecewise points even farther: 
\begin{equation}
    w_{i, j} = exp \bigg(- \gamma \  \big( \norm{L^f_{i,j} - L^{in}_{i-1, j}}^2_2 + \norm{L^f_{i,j} - L^{in}_{i, j-1}}^2_2 \big) \bigg),
\end{equation}

where $L$ represents an image in CIELab color space and $\gamma > 0$ denotes scalar weighting term heuristically chosen to be in the range $\{5,25\}$ after some experimentation. This hyperparameter can be modified according to the image at hand. For example, setting $\gamma = 24$ for confocal stacks and $\gamma = 8$ for natural images was found to be enough to obtain a satisfactory flattening effect. Comparing previous work \cite{bi20151} that is based on split-Bregman iteration, our method improves processing speed up to 50 times while obtaining comparable flattening effect. The reason is the simple geometric interpretation provided by taut-string minimization. This formulation of total variation optimization allows us to simplify our problem and obtain very efficient solvers (O(n)) surpassing state of the art. At this point, weighted taut-string $TV-\ell_1$ minimization algorithm will be briefly explained.
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  \includegraphics[width=1\textwidth]{bolkar_figures/string.pdf}
  \caption[Illustration of taut-string solution for the weighted $TV-\ell_1$ problem]{Illustration of taut-string solution for the weighted $TV-\ell_1$ problem: Blue indicates the shortest path (minimizer) of the problem constrained by weights $w_i$ shown by red (image source \cite{barberoTV14}).}
  \label{fig:string}
\end{figure}

Weighted $TV-\ell_1$ problem with a least-squares data fidelity term can be defined by:
\begin{equation}
    \underset{x}{Min} \  \frac{1}{2}\norm{x-y}^2_2 + \sum^{n-1}_{i=1} w_i \norm{x_{i+1}-x_i}_1,
\end{equation}

where pixelwise weighting scalar ${w_i} > 0$. In the implementation, dual of this expression is preferred as it allows simpler formulation of the optimization function (see \cite{barberoTV14} for derivation),
\begin{equation}
    \underset{u}{Min} \ \frac{1}{2} \norm{D^T u}^2_2 - u^T D y \ \ \text{such that} \ \norm{u_i}_1 \leq w_i \ \forall i \ | \ 0<i<n,
\end{equation}

where $D$ is the total variation inducing matrix with all zero elements except $d_{i,i}=-1$ and $d_{i,i+1}=1 \ | \ 0< i < n$. The function is further transformed by setting $u_0, u_n \leftarrow 0$,
\begin{equation}
    \underset{u}{Min} \ \sum^n_{i=1} (y_i - u_i + u_{i-1})^2 \ \ \text{such that} \ \norm{u_i}_1 \leq w_i, \ \ \forall i \ | \ 0<i<n,
\end{equation}

by performing change of variables $s=r-u$ where $r \triangleq \sum_i y_i$ we obtain,
\begin{equation}
\label{prox_ref}
    \underset{s}{Min} \ \sum^n_{i=1} (s_i - s_{i-1})^2 \ \ \text{such that} \ \norm{s_i - r_i}_1 \leq w_i ,\ \ \forall i \ | \ 0<i<n, \ \ s_0 =0, \ s_n=r_n.
\end{equation}

Theoretically Eq. \ref{prox_ref} and the following taut-string formulation can be shown to have the same minima (see \cite{steidl2005relations} for the proof):
\begin{equation}
\label{taut_string_obj}
    \underset{s}{Min} \ \sum^n_{i=1} \sqrt{1+(s_i - s_{i-1})^2} \ \ \text{such that} \ \norm{s_i - r_i}_1 \leq w_i, \ \ \forall i \ | \ 0<i<n, \ \ s_0 =0, \ s_n=r_n.
\end{equation}

Taut-string interpretation of the minimized objective in Eq. \ref{taut_string_obj} is not intuitive, but it is actually the euclidean length of a piecewise constant line through the points $(i, s_i)$. As a result, this formulation aims finding the minimum length of a string stretching between $s_0$ and $s_n$. In Figure \ref{fig:string}, visualization of the shortest path (taut-string solution) is shown with blue color whereas red indicates weights constraining the objective function and dashed line as cumulative sum of the input signal ($r$). At this stage, determination of the shortest line can be performed by applying linear geometric tricks. We refer \cite{barberoTV14} for details of the geometric implementation. In the results Section \ref{chap:discussion}, effects of our piecewise image recovery on confocal fluorescent stack and natural images will be shown.


% --------------------------------------------------
\section{Soft Segmentation}

\begin{figure}[h!]  %t top, b bottom, p page | you can also use h to try to get the figure to appear at the current location
  \centering
  \includegraphics[width=1\textwidth]{bolkar_figures/density.pdf}
  \caption[Clustering distinct fluorescence labels]{Clustering distinct fluorescence labels: (A) original image, (B) k-means clustering results for k=7, (C) fuzzy c-means clustering results for 7 clusters. Bottom: Close-up views of yellow neuron, for both k-means and fuzzy c-means, it is unidentified due to its low density comparing other pseudo-colors.}
  \label{fig:bias}
\end{figure}

Inspired by Tan et al. \cite{tan2017decomposing}, soft segmentation is posed as an optimization task where opacity values for each pixel and for each pseudo-color label are estimated assuming Porter-Duff alpha compositing model as the forward model. Optimization task is formulated as ridge (i.e, $\ell_2$-norm) and $TV-\ell_2$ regularized least-squares, and it is carried out using L-BFGS-B algorithm \cite{byrd1995limited}. We exploit a fluorescent image \textit{prior} and compute convex polyhedron containing all pseudo-colors, then vertices of this polyhedron progressively contracted to find vertices that correspond to distinct pseudo-colors observed in the image stack. This step requires user input to provide the number of desired (or expected) vertices. The reason why the convex hull based approach is preferred over density-based is due to the prior information we have about the distribution and characteristics of fluorescent data. Unlike images of natural scenes or objects that are dominated by reflectance, stacks obtained by fluorescent imaging posses several challenges from clustering analysis point of view. In the latter, pixels corresponding fluorescent emitting objects are mainly concentrated outer part of the manifold close to the bounding surface (i.e., background noise and biological noise has lower intensity values and is located in the inner regions of the space formed by pixel intensity values). This formation creates non-convex clusters and complicates the unsupervised segmentation task. Furthermore, as we aim to reconstruct neurons with all possible distinct fluorescent labels, \textit{density bias problem} caused by the unbalanced density of different pseudo-colors becomes another big issue that has to be addressed \cite{marin2017kernel}. As illustrated in Figure \ref{fig:bias}, the neuron labelled with yellow fluorescent color (A) is not identified by k-means (B) and fuzzy c-means clustering (C). In below sections, we will first describe how distinct pseudo-colors are determined and explain modified Porter-Duff model that is utilized as the forward model in our optimization function. Then we present the details of algorithm employed to obtain soft segments. 

\subsection{Determining Fluorescent Labels: Convex Polyhedron Vertices} \begin{figure}[h!]  %t top, b bottom, p page | you can also use h to try to get the figure to appear at the current location
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  \includegraphics[width=1\textwidth]{bolkar_figures/vertices.pdf}
  \caption[Example results of automatic palette calculation]{Example results of automatic palette calculation: Pseudo-color labels computed according to user-chosen number from convex hull vertices of the same image. It retrieves vertices of the convex polyhedron that encompass the all data instances.}
  \label{fig:vertices}
\end{figure}

The vertices of the polyhedron encapsulating image pseudo-colors in sRGB space, in other words distinct fluorescent labels, are determined by progressive hulls, a mesh simplification technique where mesh edges are contracted to vertices by linear optimization such that new vertex adds minimal volume to the hull at the previous iteration \cite{sander2000silhouette, platis2003progressive}. In our pipeline, we employ the implementation of \cite{tan2017decomposing}, this formulation of the problem by iterative contraction and merging results in robust and fast simplification of the hull. In addition to its efficiency, vertex-based computation of pseudo color labels ensure we will not miss any fluorescent label. We experimented an extreme case where there was only one pixel present in the in the image for a randomly chosen label. Since the vertices encapsulate all existing colors, a single pixel was enough to discover that fluorescence label. Therefore, we can claim that vertex-based automatic palette computation outperforms mainstream clustering methods such as k-means and fuzzy c-means four fluorescent image processing, and theoretically all distinct pseudo-colors are guaranteed to be revealed. To increase processing speed, data in maximum, minimum and mean projection of the stack is used to find polyhedron vertices. It has been seen that this approach speeds up processing up to ten times. An example pseudo-color palette calculation for different vertex numbers can be seen in Figure \ref{fig:vertices}.

\subsection{Weighted Porter-Duff Model} 
Porter-Duff equations are the \textit{de facto} compositing models used in computer graphics. In the original paper \cite{porter1984compositing}, author's propose a set of operations based on Lie algebra \cite{duff2017deep} that can handle compositing of RGBA images satisfying realistic appearance. Here, fourth channel A encodes opacity information (i.e., contribution of that color to the appearance of that pixel). Let $a_i \in [0, 1]$ and $c_i \in [0, 1]$ be the alpha and sRGB color values of a pixel in ith image, $i \in {1, n}$ where n is the number of images to be composited. Assuming the base image used in compositing is opaque with color $c_0$ (i.e., for our fluorescent images, we assume $c_0 = [0, 0, 0]^T$), color values of the resulting final image can be obtained by Porter-Duff over-compositing as:
\begin{equation}
\label{eq:porter-duff}
    c* = c_n + \sum^n_{i=1} \bigg[(c_{i-1}-c_i)\prod^n_{j=1}(1-a_j)\bigg].  
\end{equation}

Final opacity values of all pixels become unity as we assumed the black background alpha layer to be pure opaque at the outset. In this formulation, our task reduces to the estimation of alpha layers $a_i$ for each discovered pseudo-color $i$ by inverting Eq. \ref{eq:porter-duff}. Let us call each of the combined image chunks (i.e., alpha layers) as soft segments. As stated in \cite{tan2017decomposing}, for $i>4$ the problem becomes under-determined and requires an optimization framework to obtain a solution. Before proceeding to solution, we further modify the model to encourage sparsity and penalize overlaps between soft segments by adding an extra weighting term $w_i$:
\begin{equation}
\label{eq:porter-duff2}
    c* = c_n + \sum^n_{i=1} \bigg[(c_{i-1}-c_i)\prod^n_{j=1}(1-w_j a_j)\bigg]  ,
\end{equation}
\begin{equation*}
\label{eq:porter-duff2}
    \text{such that,} \ \  w_j = exp\bigg(-\frac{\sum^{n-1}_k \norm{c^{lab}_j - c^{lab}_{k=1}}^2_2}{2\sigma}\bigg),
\end{equation*}

where $\sigma$ is hyperparameter heuristically set to 2. Our weighting term $w_j$ brings novelty to original Porter-Duff model used by Tan et al., \cite{tan2017decomposing} by discouraging overlaps between segments (Note: $c_i^{lab}$ indicates CIELab transformed pseudo-color vertice values). Considering color vertices as objects and $\ell_2$ color difference between vertices as pairwise distances, weighting can be considered to mimic gravitation-like force. Affected by this, pixels of any pseudo-color label are pulled and/or pushed in a nonlinear fashion depending on the overall force imposed on them. Consequently, this gravitation-like force creates relatively more separated clusters comparing the original Porter-Duff forward model.

\subsection{Obtaining Soft Segments by Optimization} 

Energy function is designed to estimate spatially smooth soft segments without large gradients, and segments with minimum inter-class overlaps. Let $E_s$ be the function to be minimized, optimization for soft segments $a_i: a_i \in [0, 1], i \in \{1, n\}$ is formulated as:
\begin{equation}
    \underset{a_i}{Min} \bigg( \lambda^{ls} E_{ls}(c_i, a_i) + \lambda^{ridge} E_{ridge}(a_i)+ \lambda^{\ell2-TV} E^2_{\ell2-TV}(a_i) \bigg),
\end{equation}

\noindent where $\lambda^*$ indicates scalar weight factors, and data fidelity term for least squares Porter-Duff model is denoted by $E_{ls}$; $E_{ridge}$ and $E^2_{TV-\ell2}$ are ridge regularization and total variation term penalizing large spatial gradients. These energy terms are defined by:
\begin{subequations}
\begin{align}
& E_{ls} \triangleq \frac{1}{3} \Bigg|\Bigg|c_{in} - c_n + \sum^n_{i=1} \bigg[(c_{i-1}-c_i)\prod^n_{j=1}(1-w_j a_j)\bigg]\Bigg|\Bigg|_2^2  \\
& E^2_{\ell2-TV}  \triangleq  \frac{1}{n} \sum_{i=1}^n(\nabla a_i)^2 \\
& E_{ridge}  \triangleq \frac{1}{n} \sum_{i=1}^n(a_i)^2
\end{align}
\end{subequations}

Since the problem is ill-posed and there exist infinitely possible solutions if no restrictions are set, we require regularizations complementing least-squares data fidelity term. In the energy function, ridge and squared $\ell_2$-norm total variation regularization are chosen as the regularizers. Although we had several attempts for $\ell_1$-norm based regularization, solving the formulated large-scale nonlinear and non-smooth energy function turned out to be cumbersome and unstable. Thereby motivating us to employ convex and smooth regularization schemes. Ridge (i.e., TÄ±khonov) is a widely used regularizer discouraging over-fitting in the optimization step. Since the posed task is unsupervised, ridge regularization outputs inherently bounded segments and discourages overlaps between them. On the other hand, squared $TV-\ell2$ term penalizes high gradients and creates smooth segments. It also enables natural inpainting and assists merging of divided segments. We should note that scalar weighting ($\lambda^*$) hyperparameters play a very important role in optimization and machine learning tasks. To ensure successful recovery of soft segments, we reserve several z-stacks as the validation set for manual tuning of $\lambda^*$ values. After our experiments, we found that, $\lambda^{ls}=40$, $\lambda^{ridge}=2$ and $\lambda^{TV-\ell2}=20$ values gave satisfactory results. An example figure showing the effects of weighting hyperparameters can be viewed in Figure \ref{fig:hyper}.
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  \includegraphics[width=1\textwidth]{bolkar_figures/hyperparameters.pdf}
 \caption[Effects of hyperparameters]{Effects of hyperparameters on two soft segments recovered from the synthetic image shown on left: (A) weights $\lambda^{ls}:40, \ \lambda^{ridge}:2, \  \lambda^{TV^{\ell_2}}:20$, (B) $\lambda^{ls}:40, \ \lambda^{ridge}:10, \  \lambda^{TV^{\ell_2}}:20$, (C) $\lambda^{ls}:40, \ \lambda^{ridge}:2, \  \lambda^{TV^{\ell_2}}:1$. It is clearly visible that increasing weight of ridge regularization results in unbalanced segments, on the other hand, decreasing $\lambda^{TV^{\ell_2}}$ encourage higher gradients. Computation times also varies according the choice of weights. In the case (B), processing speed is twice faster, and in (C) twice slower.}
  \label{fig:hyper}
\end{figure}

Due to relaxation of pixel values, the solution can be posed as a bound constrained nonlinear optimization problem where pixel values are restricted to [0, 1] range. As in Tan et al.'s \cite{tan2017decomposing} implementation, active set based L-BFGS-B (i.e., limited-memory and bound-constrained BFGS) is employed in our optimization task \cite{byrd1995limited}. Similar to other quasi-Newton algorithms, L-BFGS-B does not require the Hessian matrix, but rather an approximation $B_k$ is used and updated in each iteration. Previously explained L-BFGS \cite{byrd1994representations} for large-scale optimization is central in L-BFGS-B as well. L-BFGS-B is an extended version of original work to allow optimization of variables $x^n$ with bound constraints of type $l^n \leq x^n \leq r^n$. Original implementation written in FORTRAN is provided by the authors \cite{zhu1997algorithm}, moreover several python wrappers can be also found in scientific computing libraries such as Scipy.

Pseudo-code of BFGS and L-BFGS quasi-Newton approximation were explained in Section \ref{sec:opt}. At this point, we can briefly provide the details of L-BFGS-B algorithm that exploits BFGS iteration to approximate Hessian matrix. It should be noted that applications of L-BFGS-B are not limited to constrained optimization, and it can be used to minimize constrained problems without worrying about the active set of variables. Referring the quasi-Newton update obtained by Taylor expansion at Eq. \ref{eq:2.5}, function $f(x)$ around the neighbourhood of $x_k$ can be modeled by:
\begin{equation}
    m_k(x) = f_k + (\nabla^T f_k)(x-x_k) + \frac{1}{2} (x-x_k)^T B_k (x-x_k),
\end{equation}

where $B_k$ denoted limited-memory Hessian approximation of BFGS. Here L-BFGS-B algorithm steps can be given as:

\begin{enumerate}
    \item Predefined tolerance condition is controlled. Let $proj(.)$ denote gradient projection defined as:
    \begin{equation}
        proj(x, l, u) \triangleq   
        \begin{cases}
             l_i, \ x_i<l_i\\
             u_i, \ x_i>u_i \ ,\\
             x_i, \ o.w.
        \end{cases}
    \end{equation}
    
    then iteration is stopped if:
    \begin{equation}
        \norm{proj(x_k - \nabla f_k, l, u) - x_k}_{\infty} < Tol,
    \end{equation}
    
    where $Tol$ indicates the predefined tolerance value given by user input. In our case, we found $Tol$ in the range of $[10^{-4}, 10^{-5}]$ sufficient to reach the desired outcome.
    
    \item Cauchy point is computed as described in \cite{byrd1995limited}. CP is used to determine active and free variables among $x$ that restrict search space.

    \item Subspace minimization and strong-Wolfe line search: $m_k$ is minimized in an unconstrained fashion for the determined free variables. Search direction is computed using conjugate gradient and step length is determined using backtracking to satisfy the strong-Wolfe condition (see \cite{wright1999numerical}). 

    \item Limited memory BFGS Hessian approximation $(B_{k+1})$ is computed by storing first $m$ variables, then the algorithm continues to the next iteration. 

\end{enumerate}

After determination of pseudo-color vertices, segments for each vertex are estimated sequentially. In other words, we recover segments from each 2d color plane in z-stack one by one. This choice is due to computational restrictions. Considering the size of the viral labeled images used in our experiments, minimizing approximately $10^8$ variables took its toll and caused memory errors. Since the vertices are globally determined, this actually brings several advantages from practical point of view. Firstly, it is possible to check the results while the computation is in progress. Secondly, it gives the possibility to segment only from specific planes chosen by the user. Since pseudo-color palette is computed globally, proposed plane-wise segmentation does not skip any fluorescence label.

\section{Post Processing}

After recovery of soft segments, one might require binary masks of the actual neuron depending on the application at hand. For the case of image-based identification of neurons from its dendritic arborization, it is desirable to have a denoised 3d reconstruction where pixels not belonging to neurons are masked out of the stack. Unlike previous works employing a trained deep network to augment nonlinear morphological processing \cite{sumbul2014automated}, here we develop an end-to-end framework using only nonlinear mathematical morphology with only a few hyperparameters that need tuning. This enables fast processing of the whole stack in a few seconds.
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  \includegraphics[width=1\textwidth]{bolkar_figures/post_steps.pdf}
  \caption[Step by step post processing algorithm]{Step by step post processing algorithm: (a) optional median filtering, (b) dilation, (c) applying distance transform and combining connected components closer than a predefined distance threshold, (d) preserving N largest components and removing smaller ones, (e) relaxing distance transform threshold and merging components to create the large mask. Lastly, the largest connected component is used as a mask to segment hard boundaries.}
  \label{fig:post}
\end{figure}

As the first step, a 3d median filter is applied to remove impulse noise. This step is optional and the user is asked to decide whether to filter the stack or not. We observed that median filtering actually adversely affects images that are not spoiled by impulsive noise. Therefore this decision is set as a hyperparameter in our algorithm. We also observed filtering applied to a local neighbourhood $hxhxh \ , \ h \in \{1,3\}$ gives enough satisfactory results. As the second step, each voxel is dilated using a $3x3x3$ structural element, and then using distance transform connected components closer to 3 voxels are merged. At this point, it is necessary to remove relatively small objects, thus largest N connected component is preserved and others are simply set to zero. This N is the second parameter that needs user input. Later in our experimentation, we found out that N in the range $\{500, 800\}$ performs equivalently well, without causing much distortion. Since our aim is to create a mask, we relax our distance transform threshold this time and combine connected components smaller than 8 voxels. This over-dilation will enable preservation of the complete dendritic tree without causing any division. As the last step, we take the largest connected component obtained at the previous step and apply it as a mask onto the original stack to recover the full branching of the neuron. It is striking to realize that applying nonlinear mathematical operations to obtain a mask actually results in more accurate and robust reconstruction than applying the pipeline directly on the image stack. Step by step illustration of the process is also illustrated in Figure \ref{fig:post}.   

\section{Implementation}

\begin{table}[tbp]
\begin{tabular}{l|l}
\toprule

\multirow{2}{*}{} Parameter Names & Explanation \\ 
                \bottomrule 
                w\_fidelity\_lsl2 & weight of L2-norm least-squares data fidelity term \\
                w\_ridge & weight of ridge (Tikhonov) regularization  \\
                w\_tvl2 & weight of L2-norm total variation regularization \\
                threshold\_opacity & clips opacity values below the threshold to 0 before saving \\
                stack\_path & directory containing input stack   \\ 
                output\_path & directory to save results \\
                automatic\_color\_vertices & set 1 to compute pseudo-color palette, 0 to manually indicate \\
                number\_soft\_segments & number of output segments \\
                manual\_vertices & if automatic computation set 0, indicate pseudo-colors \\
                drop\_color & ignore one of the vertices when computing soft segments  \\
                FAST & disable weighting term in the optimization function \\
                SAVE\_COLOR & also saves colored versions of soft segments: 1 or 0 \\
                start\_plane & compute segments from substack starting from, set -1 to disable \\
                end\_plane & compute segments from substack until, set -1 to disable \\ 
                level\_contrast\_enhancement & within {1, 10}, choose -1 not to enhance contrast  \\
                level\_flattening & choose a value > 1, you may get assertation error if too high \\
                iterations\_flattening & flatten several times (e.g., 2-4) \\
                    
\bottomrule
\end{tabular}
\caption{List of parameters that can be directly changed from the json file}
\label{table:parameters}
\end{table} 

During implementation, we exploit advantage of our Debian based operating system (Ubuntu 16.04) and create a Conda python environment that includes the whole soft segmentation pipeline except BaSIC background subtraction and post-processing Matlab script. We use original BaSIC ImageJ plug-in that gives fast background subtraction (i.e., approximately 5 min for an image stack of size 150x1000x1000x3). Post-processing is implemented in Matlab by using mathematical morphology functions in the image processing toolbox. To fully exploit its speed advantage, we recommend using a Matlab version higher than R2016a (i.e., processing takes approximately 1 min for an image stack). The software is intended to be user-friendly and open source so that it can be explored freely by neuroscientists. Full code including the external ImageJ BaSIC plugin is publicly available at github.com/elras/SoftsegmentNeurons and github.com/farrowlab/Neuron-Softsegmentation. For easy modification of parameters, we decided to use JSON data interchange format. Since parameters are parsed from "params.json", it may not be even necessary to modify the code itself. In the Table \ref{table:parameters}, full list of of parameters included in the json file and corresponding explanations are provided.
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\chapter{Retinabow Protocol}
\label{chap:protocol}

\begin{figure}[h!]  %t top, b bottom, p page | you can also use h to try to get the figure to appear at the current location
  \centering
  \includegraphics[width=1\textwidth]{bolkar_figures/protocol1.pdf}
  \caption[Schematic of the targeted neural circuits from retina to lateral posterior nuclei (LP) via superior colliculus (SC).]{Schematic of the targeted neural circuits from retina to lateral posterior nuclei (LP) via superior colliculus (SC). Firstly HSV virus vectors are injected to identify wide-field neurons which take inputs from retinal ganglion cells. Then, three virus vectors corresponding red, green and blue band emission are injected to create stochastic multi-color expression in ganglion cells}
  \label{fig:protocol1}
\end{figure}

\noindent \textbf{Injection of Rabbies Vectors} \\
 At the outset, floxed HSV was injected to the LP. This results in expression of TVA and protein G in wide-field neurons that project to the LP. We wait 21 days for injections to be expressed. Then, a mixture of different EnvA-coated and G-deleted fluorescent rabies virus were injected to SC that will interact with neurons containing the TVA and protein G (Figure \ref{fig:protocol1}). Retinal ganglion cells having synaptic connections with wide-field neurons will be labeled with different fluorescent proteins randomly. This occur due to the retrograde transynaptic motion of rabies virus vectors. At the eighth day following the rabies virus injection, retina was dissected and fixed in the PFA. Afterwards, the immunostaing is performed to amplify emitted fluorescent signal (Figure \ref{fig:protocol2}).\\
 
\noindent \textbf{Immunostaining} \\
The primary antibodies recognizing BFP, mCherry, GCaMP6 and ChaT (for Starburst Amacrine cells labelling) were firstly prepared and incubated with the whole-mount retina for 5-7 days. Then relative secondary antibodies conjugated with different fluorescent proteins (405, 555, 488 and 633) were added and incubated overnight. After mounting, the retina will be ready for image acquisition. \\

\noindent \textbf{Confocal Laser Scanning Microscopy Imagining}  \\
Zeiss LSM 710 microscope is used for confocal imaging of retinas. Images of the whole retina for overview purposes were captured with a 10x (plan-APOCHROMAT 0.45 NA, Zeiss) objective with settings: Zoom 0.7, 4x4-tiles with 0 to 15\% overlap, 2.37 $\mu$m/pixel resolution. Close-up retinal ganglion cell images used for processing purposes obtained with 63x (plan-APOCHROMAT 1.4 NA, Zeiss) objective with settings: Zoom 0.7, 2x2-tiles (this is adjusted depending on the cell size) with 0 to \%15 overlap. Resulting images have XY-resolution of approximately 0.38 $\mu$m/pixel and a Z-resolution between 0.25 and 0.35$\mu$m/pixel. The Z-stacks scanned over approximately 50 $\mu$m in depth. \\

\begin{figure}[tbp]  %t top, b bottom, p page | you can also use h to try to get the figure to appear at the current location
  \centering
  \includegraphics[width=1\textwidth]{bolkar_figures/protocol2.pdf}
  \caption[Schematic of the processing of the retina.]{Schematic of the processing of the retina. Immunostaining is necessary to amplify fluorescence emission.}
  \label{fig:protocol2}
\end{figure}

%
%\chapter{Determination of Distinct Fluorescent Labels}
%\label{chap:findcolors}


%\chapter{SC: Emerging Neural Circuits}
%****************

